

Welcome to OpenFX documentation

The OpenFX documentation is organized as follows:

	The programming guide contains everything to get started with OpenFX to create a new plug-in or host application

	The reference guide contains the full reference documentation about the OpenFX protocol and design

This documentation is also
available online [http://openfx.readthedocs.io/en/doc-updates/]
and can be downloaded as a
PDF [https://readthedocs.org/projects/openfx/downloads/pdf/doc-updates/] or
HTML zip [https://readthedocs.org/projects/openfx/downloads/htmlzip/doc-updates/]
file.

This manual is maintained largely by volunteers.

The Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA 4.0) [https://creativecommons.org/licenses/by-sa/4.0/] is used for this manual, which is a free and open license. Though there are certain restrictions that come with this license you may in general freely reproduce it and even make changes to it. However, rather than distribute your own version of this manual, we would much prefer if you would send any corrections or changes to the OpenFX association.

	OpenFX reference

	OpenFX Programming Guide

OpenFX reference

This is a mostly complete reference guide to the OFX image effect plugin
architecture. It is a backwards compatible update to the 1.2 version of
the API. The changes to the API are listed in an addendum.

	Structure of The OFX and the Image Effect API

	The Generic Core API

	The OfxHost Struct

	The OfxPlugin Struct

	Packaging OFX Plug-ins

	The Image Effect API

	Image Processing Architectures

	Image Effect Contexts

	Thread and Recursion Safety

	Coordinate Systems

	Images and Clips

	Effect Parameters

	Rendering

	Interacts

	Image Effect Clip Preferences

	Actions Passed to An Image Effect

	Actions Passed to an Interact

	OpenFX suites reference

	Properties by object reference

	Properties Reference

	Auto-generated Reference Index

	Complete Reference Index

	Status Codes

	Changes to the API for 1.2

Structure of The OFX and the Image Effect API

The Structure Of The Generic OFX API

OFX is actually several things. At its base it is a generic plug-in
architecture which can be used to implement a variety of plug-in APIs.
The first such API to be implemented on the core architecture is the OFX
Image Effect Plug-in API.

It is all specified using the ‘C’ programming language. C and C++ are
the languages mainly used to write visual effects applications (the
initial target for OFX plug-in APIs) and have a very wide adoption
across most operating systems with many available compilers. By making
the API C, rather than C++, you remove the whole set of problems around
C++ symbol mangling between the host and plug-in.

APIs are defined in OFX by only a set of C header files and associated
documentation. There are no binary libraries for a plug-in or host to
link against.

Hosts rely on two symbols within a plug-in, all other communication is
boot strapped from those two symbols. The plug-in has no symbolic
dependencies from the host. This minimal symbolic dependency allows for
run-time determination of what features to provide over the API, making
implementation much more flexible and less prone to backwards
compatibility problems.

Plug-ins, via the two exposed symbols, indicate the API they implement,
the version of the API, their name, their version and their main entry
point.

A host communicates with a plug-in via sending ‘actions’ to the
plug-in’s main entry function. Actions are C strings that indicate the
specific operation to be carried out. They are associated with sets of
properties, which allows the main entry function to behave as a generic
function.

A plug-in communicates with a host by using sets of function pointers
given it by the host. These sets of function pointers, known as
‘suites’, are named via a C string and a version number. They are
returned on request from the host as pointers within a C struct.

Properties are typed value/name pairs that exist on the various OFX
objects and are action argument values to the plug-in’s main entry
point. They are how a plug-in and host pass individual values back and
forth to each other. The property suite, defined inside
ofxProperty.h [https://github.com/ofxa/openfx/blob/master/include/ofxProperty.h]
is used to do this.

OFX APIs

An OFX plug-in API is a named set of actions, properties and suites to
perform some specific set of tasks. The first such API that has been
defined on the OFX core is the OFX Image Effect API. The set of actions,
properties and suites that constitute the API makes up the major part of
this document.

Various suites and actions have been defined for the OFX image effect
API, however many are actually quite generic and could be reused by
other APIs. The property suite definitely has to be used by all other
APIs, while the memory allocation suite, the parameter suite and several
others would probably be useful for all other APIs. For example the
parameter suite could be re-used to specify user visible parameters to
the other APIs.

Several types are common to all OFX APIs, and as such are defined in
ofxCore.h [https://github.com/ofxa/openfx/blob/master/include/ofxCore.h].
Most objects passed back to a plug-in are generally
specified by blind data handles, for example:

	
typedef struct OfxPropertySetStruct *OfxPropertySetHandle

	Blind data structure to manipulate sets of properties through.

This allows for strong typing on functions but
allows the implementation of the object to be hidden from the plug-in.

	OfxStatus

Used to define a set of status codes indicating the success or
failure of an action or suite function

	OfxHost

A C struct that is used by a plug-in to get access to suites from a
host and properties about the host

	
	
OfxStatus() OfxPluginEntryPoint (const char *action, const void *handle, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Entry point for plug-ins.

	action - ASCII c string indicating which action to take

	instance - object to which action should be applied, this will need to be cast to the appropriate blind data type depending on the action

	inData - handle that contains action specific properties

	outData - handle where the plug-in should set various action specific properties

This is how the host generally communicates with a plug-in. Entry points are used to pass messages to various objects used within OFX. The main use is within the OfxPlugin struct.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

A typedef for functions used as main entry points for a plug-in
(and several other objects),

	OfxPlugin

A C struct that a plug-in fills in to describe itself to a host.

Several general assumptions have been made about how hosts and plug-ins
communicate, which specific APIs are allowed to break. The main is the
distinction between…

	Descriptors

Which hosts and plug-ins use to define the general behaviour of an
object, e.g. the object used to specify what bit depths an Image
Effect Plug-in is willing to accept,

	Instances

Which hosts and plug-ins use to control the behaviour of a specific
live object.

In most APIs descriptors are typically passed from a host to a plug-in
during the kOfxActionDescribe action, whilst all other actions
are passed an instance, e.g: the object passed to the
kOfxActionCreateInstance action.

The OFX Image Effect API.

The OFX Image Effect Plug-in API is designed for image effect plug-ins
for 2D visual effects. This includes such host applications as
compositors, editors, rotoscoping tools and colour grading systems.

At heart the image effect API allows a host to send a plug-in a set of
images, state the value of a set of parameters and get a resulting image
back. However how it does this is somewhat complicated, as the plug-in
and host have to negotiate what kind of images are handled, how they can
be processed and much more.

The Generic Core API

This chapter describes how plug-ins are distributed and the core API for
loading and identifying image effect plug-ins, and the methods of
communications between plug-in and host.

OFX Include Files

The C include files that define an OFX API are all that are needed by
a plug-in or host to implement the API. Most include files define a set
of independent suites which are used by a plug-in to communicate with
a host application.

There are two include files that are used with nearly every derived API.
These are…

	ofxCore.h [https://github.com/ofxa/openfx/blob/master/include/ofxCore.h]
is used to define the basic communication mechanisms between a host
and a plug-in. This includes the way in which a plug-in is defined to
a host and how to bootstrap the two way communications. It also has
several other basic action and property definitions.

	ofxProperty.h [https://github.com/ofxa/openfx/blob/master/include/ofxProperty.h]
specifies the property suite, which is how a plug-in gets and sets
values on various objects in a host application.

Identifying and Loading Plug-ins

Plug-ins must implement at least two, and normally three, exported functions for a host to identify
the plug-ins and to initiate the bootstrapping of communication between the two.

	
OfxStatus OfxSetHost(const OfxHost *host)

	First thing host should call.

This host call, added in 2020, is not specified in earlier implementation of the API. Therefore host must check if the plugin implemented it and not assume symbol exists. The order of calls is then: 1) OfxSetHost, 2) OfxGetNumberOfPlugins, 3) OfxGetPlugin The host pointer is only assumed valid until OfxGetPlugin where it might get reset. Plug-in can return kOfxStatFailed to indicate it has nothing to do here, it’s not for this Host and it should be skipped silently.

	
int OfxGetNumberOfPlugins(void)

	Defines the number of plug-ins implemented inside a binary.

A host calls this to determine how many plug-ins there are inside a binary it has loaded. A function of this type must be implemented in and exported from each plug-in binary.

	
OfxPlugin *OfxGetPlugin(int nth)

	Returns the ‘nth’ plug-in implemented inside a binary.

Returns a pointer to the ‘nth’ plug-in implemented in the binary. A function of this type must be implemented in and exported from each plug-in binary.

OfxSetHost is the very first function called by the host after the binary has been
loaded, if it is implemented by the plugin. It passes an The OfxHost Struct struct to the plugin
to enable the plugin to decide which effects to expose to the host.
COMPAT: this call was introduced in 2020; some hosts and/or plugins may not implement it.

OfxGetNumberOfPlugins is the next function called by the host after the binary has been
loaded and OFXSetHost has been called.
The returned pointer to OfxGetPlugin and pointers in the struct do not need to be freed in any way by the host.

The Plug-in Main Entry Point And Actions

Actions are how a host communicates with a plug-in. They are in effect generic function calls. Actions are issued via a plug-in’s ``mainEntry``function pointer found in its OfxPlugin struct. The function signature for the main entry point is

	
OfxStatus() OfxPluginEntryPoint (const char *action, const void *handle, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Entry point for plug-ins.

	action - ASCII c string indicating which action to take

	instance - object to which action should be applied, this will need to be cast to the appropriate blind data type depending on the action

	inData - handle that contains action specific properties

	outData - handle where the plug-in should set various action specific properties

This is how the host generally communicates with a plug-in. Entry points are used to pass messages to various objects used within OFX. The main use is within the OfxPlugin struct.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

The OfxStatus value returned is dependent upon the action being
called; however the value kOfxStatReplyDefault is returned if the
plug-in does not trap the action.

The exact set of actions passed to a plug-in’s entry point are dependent
upon the API the plug-in implements. However, there exists a core set of
generic actions that most APIs would use.

Suites

Suites are how a plug-in communicates back to the host. A suite is
simply a set of function pointers in a C struct. The set of suites a
host needs to implement is defined by the API being implemented. A suite
is fetched from a host via the OfxHost::fetchSuite() function. This
returns a pointer (cast to void *) to the named and versioned set of
functions. By using this suite fetching mechanism, there is no symbolic
dependency from the plug-in to the host, and APIs can be easily
expandable without causing backwards compatibility issues.

If the host does not implement a requested suite, or the requested
version of that suite, then it should return NULL.

Sequences of Operations Required to Load a Plug-in

The following sequence of operations needs to be performed by a host
before it can start telling a plug-in what to do via its mainEntry
function.

	the binary containing the plug-in is loaded,

	(if implemented by plugin and host): the host calls the plug-in’s OfxSetHost function

	the number of plug-ins is determined via the
OfxGetNumberOfPlugins
function,

	for each plug-in defined in the binary

	OfxGetPlugin is called,

	the pluginApi and apiVersion of the returned OfxPlugin struct are examined,

	if the plug-in’s API or its version are not supported, the plug-in
is ignored and we skip to the next one,

	the plug-in’s pointer is recorded in a plug-in cache,

	an appropriate OfxHost struct is passed to the plug-in via setHost in the returned OfxPlugin struct.

Who Owns The Data?

Objects are passed back and forth across the API, and in general, it is
the thing that passes the data that is responsible for destroying it.
For example the property set handle in the
OfxHost struct is managed by the host.

There are a few explicit exceptions to this. For example, when an image
effect asks for an image from a host it is passed back a property set
handle which represents the image. That handle needs to later be
disposed of by an effect, by an explicit function call back to the host.
These few exceptions are documented with the suite functions that access
the object.

Strings

A special case is made for strings. Strings are considered to be of two
types, value strings and label strings. A label string is any string
used by OFX to name a property or type. A value string is generally a
string value of a property.

More specifically, a label string is a string passed across the API as
one of the following…

	a property label (i.e: the char* property argument in the property
suites)

	a string argument to a suite function which must be one of a set of
predefined set of values e.g:
paramType
argument to
OfxParameterSuiteV1::paramDefine
, but not the
name
argument)

Label strings are considered to be static constant strings. When passed
across the API the host/plug-in receiving the string neither needs to
duplicate nor free the string, it can simply retain the original pointer
passed over and use that in future, as it will not change. A host must
be aware that when it unloads a plug-in all such pointers will be
invalid, and be prepared to cope with such a situation.

A value string is a string passed across the API as one of the
following…

	all value arguments to any of the property suite calls

	any other char* argument to any other function.

Value strings have no assumptions made about them. When one is passed
across the API, the thing that passed the string retains ownership of
it. The thing getting the string is not responsible for freeing that
string. The scope of the string’s validity is until the next OFX API
function is called. For example, within a plugin

// pointer to store the returned value of the host name
char *returnedHostName;

// get the host name
propSuite->propGetString(hostHandle, kOfxPropName, 0, &returnedHostName);

// now make a copy of that before the next API call, as it may not be valid after it
char *hostName = strdup(returnedHostName);

paramSuite->getParamValue(instance, "myParam", &value);

The OfxHost Struct

The OfxHost struct is how a host provides plug-ins with access to the
various suites that make up the API they implement, as well as a host
property set handle which a plug-in can ask questions of. The
setHost function in the OfxPlugin struct is passed a pointer to an
OfxHost as the first thing to boot-strapping plug-in/host communication.

The OfxHost contains two elements,

	host
- a property set handle that holds a set of properties which describe
the host for the plug-in’s API

	fetchSuite
- a function handle used to fetch function suites from the host that
implement the plug-in’s API

The host property set handle in the OfxHost is not global across all
plug-ins defined in the binary. It is only applicable for the plug-in
whose ‘setHost’ function was called. Use this handle to fetch things
like host application names, host capabilities and so on. The set of
properties on an OFX Image Effect host is found in the section
Properties on the Image Effect Host

The fetchSuite function is how a plug-in gets a suite from the host.
It asks for a suite by giving the C string corresponding to that suite
and the version of that suite. The host will return a pointer to that
suite, or NULL if it does not support it. Please note that a suite
cannot be fetched until the very first action is called on the plug-in,
which is the load action.

	
struct OfxHost

	Generic host structure passed to OfxPlugin::setHost function.

This structure contains what is needed by a plug-in to bootstrap its connection to the host.

Public Members

	
OfxPropertySetHandle host

	Global handle to the host. Extract relevant host properties from this. This pointer will be valid while the binary containing the plug-in is loaded.

	
const void *(*fetchSuite)(OfxPropertySetHandle host, const char *suiteName, int suiteVersion)

	The function which the plug-in uses to fetch suites from the host.

	host - the host the suite is being fetched from this must be the host member of the OfxHost struct containing fetchSuite.

	suiteName - ASCII string labelling the host supplied API

	suiteVersion - version of that suite to fetch

Any API fetched will be valid while the binary containing the plug-in is loaded.

Repeated calls to fetchSuite with the same parameters will return the same pointer.

returns
	NULL if the API is unknown (either the api or the version requested),

	pointer to the relevant API if it was found

The OfxPlugin Struct

This structure is returned by a plugin to identify itself to the host.

typedef struct OfxPlugin {
 const char *pluginApi;
 int apiVersion;
 const char *pluginIdentifier;
 unsigned int pluginVersionMajor;
 unsigned int pluginVersionMinor;
 void (*setHost)(OfxHost *host);
 OfxPluginEntryPoint *mainEntry;
} OfxPlugin;

	pluginApi
	This C string tells the host what API the plug-in implements.

	apiVersion
	This integer tells the host which version of its API the plug-in
implements.

	pluginIdentifier
	This is the globally unique name for the plug-in.

	pluginVersionMajor
	Major version of this plug-in, this gets incremented whenever
software is changed and breaks backwards compatibility.

	pluginVersionMinor
	Minor version of this plug-in, this gets incremented when software
is changed, but does not break backwards compatibility.

	setHost
	Function used to set the host pointer (see below) which allows the
plug-in to fetch suites associated with the API it implements.

	mainEntry
	The plug-in function that takes messages from the host telling it to
do things.

Interpreting the OfxPlugin Struct

When a host gets a pointer back from OfxGetPlugin, it examines the
string pluginApi. This identifies what kind of plug-in it is. Currently
there is only one publicly specified API that uses the OFX mechanism,
this is "OfxImageEffectPluginAPI", which is the image effect API
being discussed by this book. More APIs may be created at a future date,
for example “OfxImageImportPluginAPI”. Knowing the type of plug-in, the
host then knows what suites and host handles are required for that
plug-in and what functions the plug-in itself will have. The host passes
a OfxHost structure appropriate to that plug-in via its setHost
function. This allows for the same basic architecture to support
different plug-in types trivially.

OFX explicitly versions plug-in APIs. By examining the apiVersion, the
host knows exactly what set of functions the plug-in is going to supply
and what version of what suites it will need to provide. This also
allows plug-ins to implement several versions of themselves in the same
binary, so it can take advantages of new features in a V2 API, but
present a V1 plug-in to older hosts that only support V1.

If a host does not support the given plug-in type, or it does not
support the given version it should simply ignore that plug-in.

A plug-in needs to uniquely identify itself to a host. This is the job
of pluginIdentifier. This null terminated ASCII C string should be
unique among all plug-ins, it is not necessarily meant to convey a
sensible name to an end user. The recommended format is the reverse
domain name format of the developer, for example “uk.co.thefoundry”,
followed by the developer’s unique name for the plug-in. e.g.
“uk.co.thefoundry.F_Kronos”.

A plug-in (as opposed to the API it implements) is versioned with two
separate integers in the OfxPlugin struct. They serve two separate
functions and are,

	pluginVersionMajor
flags the functionality contained within a plug-in. Incrementing this
number means that you have broken backwards compatibility of the
plug-in. More specifically, this means a setup from an earlier
version, when loaded into this version, will not yield the same
result.

	pluginVersionMinor
flags the release of a plug-in that does not break backwards
compatibility, but otherwise enhances that plug-in. For example,
increment this when you have fixed a bug or made it faster.

If a host encounters multiple versions of the same plug-in it should,

	when creating a brand new instance, always use the version of a
plug-in with the greatest major and minor version numbers,

	when loading a setup, always use the plug-in with the major version
that matches the setup, but has the greatest minor number.

As a more concrete example of versioning: the plug-in identified by
“org.wibble:Fred” is initially released as 1.0, However a few months
later, wibble.org figure out how to make it faster and release it as
1.1. A year later, Fred can now do automatically what a user once needed
to set up five parameters to do, thus making it much simpler to use.
However this breaks backwards compatibility as the effect can no longer
produce the same output as before, so wibble.org then release this as
v2.0.

A user’s host might now have three versions of the Fred plug-in on it,
v1.0, v1.1 and v2.0. When creating a new instance of the plug-in, the
host should always use v2.0. When loading an old project which has a
setup from a v1.x plug-in, it should always use the latest, in this case
being v1.1.

Note that plug-ins can change the set of parameters between minor
version releases. If a plug-in does so, it should do so in a backwards
compatible manner, such that the default value of any new parameter
would yield the same results as previously. See the chapter below about
parameters.

Packaging OFX Plug-ins

Where a host application chooses to search for OFX plug-ins, what binary
format they are in and any directory hierarchy is entirely up to it.
However, it is strongly recommended that the following scheme be
followed.

Binary Types

Plug-ins should be distributed in the following formats, depending on
the host operating system….

	Microsoft Windows, as “.dll” dynamically linked libraries,

	Apple OSX, as binary bundles,

	LINUX (and other Unix variants), as native dynamic shared objects.

Installation Directory Hierarchy

Each plug-in binary is distributed as a Mac OS X package style directory
hierarchy. Note that there are two distinct meanings of ‘bundle’, one
referring to a binary file format, the other to a directory hierarchy
used to distribute software. We are distributing binaries in a bundle
package, and in the case of OSX, the binary is a binary bundle. All the
binaries must end with ".ofx", regardless of the host operating
system.

The directory hierarchy is as follows…..

	NAME.ofx.bundle

	Contents

	Info.plist

	Resources

	NAME.xml

	EFFECT_A.png

	EFFECT_A.svg

	EFFECT_B.png

	EFFECT_B.svg

	…

	ARCHITECTURE_A

	NAME.ofx

	ARCHITECTURE_B

	NAME.ofx

	…

	ARCHITECTURE_N

	NAME.ofx

Where…

	Info.plist is relevant for OSX only and needs to be filled in
appropriately,

	NAME is the file name you want the installed plug-in to be identified
by,

	EFFECT_N.png - is an optional PNG image file image to use as an
icon for the effect in the plug-in binary which has a matching
pluginIdentifier
field in the
OfxPlugin
struct,

	EFFECT_N.svg - is an optional scalable vector graphic file to use as an
icon for the plug-in in the binary which has a matching
pluginIdentifier
field in the
OfxPlugin
struct,

	ARCHITECTURE is the specific operating system architecture the
plug-in was built for, these are currently…

	MacOS - for Apple Macintosh OS X 32 bit and/or universal binaries

	MacOS-x86-64 - for Apple Macintosh OS X, specifically on intel x86
CPUs running AMD’s 64 bit extensions. 64 bit host applications
should check this first, and if it doesn’t exist or is empty, fall
back to “MacOS” looking for a universal binary.

	Win32 - for Microsoft Windows (compiled 32 bit)

	Win64 - for Microsoft Windows (compiled 64 bit)

	IRIX - for SGI IRIX plug-ins (compiled 32 bit)

	IRIX64 - for SGI IRIX plug-ins (compiled 64 bit)

	Linux-x86 - for Linux on x86 CPUs (compiled 32 bit)

	Linux-x86-64 - for Linux on x86 CPUs running AMD’s 64 bit
extensions

Note that not all the above architectures need be supported, at least
one.

This structure is necessary on OS X, but it also gives a nice skeleton
to hang all other operating systems from in a single install, as well as
a clean place to put resources.

The Info.plist is specific to Apple and you should consult the Apple
developer’s website for more details. It should contain the following
keys…

	CFBundleExecutable - the name of the binary bundle in the MacOS
directory

	CFBundlePackageType - to be BNDL

	CFBundleInfoDictionaryVersion

	CFBundleVersion

	CFBundleDevelopmentRegion

Installation Location

plug-ins are searched for in a variety of locations, both default and
user specified. All such directories are examined for plug-in bundles
and sub directories are also recursively examined.

A list of directories is supplied in the “OFX_PLUGIN_PATH” environment
variable, these are examined, first to last, for plug-ins, then the
default location is examined.

On Microsoft Windows machines, the plug-ins are searched for in:

	the ‘;’-separated directory list specified by the environment
variable “OFX_PLUGIN_PATH”

	the directory returned by
getStdOFXPluginPath
in the following code snippet:

#include "shlobj.h"
#include "tchar.h"
const TCHAR *getStdOFXPluginPath(void)
{
 static TCHAR buffer[MAX_PATH];
 static int gotIt = 0;
 if(!gotIt) {
 gotIt = 1;
 SHGetFolderPath(NULL, CSIDL_PROGRAM_FILES_COMMON, NULL, SHGFP_TYPE_CURRENT, buffer);
 _tcscat(buffer, __T("\\OFX\\Plugins"));
 }
 return buffer;
}

	the directory C:\Program Files\Common Files\OFX\Plugins. This
location is deprecated, and it is returned by the code snippet above
on English language systems. However it should still be examined by
hosts for backwards compatibility.

On Apple OSX machines, the plug-ins are searched for in:

	the ‘;’-separated directory list specified by the environment
variable “OFX_PLUGIN_PATH”

	the directory /Library/OFX/Plugins

On UNIX, Linux and other UNIX like operating systems, the plug-ins are
searched for in:

	the ‘:’-separated directory specified by the environment variable
“OFX_PLUGIN_PATH”

	the directory /usr/OFX/Plugins

Any bundle or sub-directory name starting with the character ‘@’ is to
be ignored. Such directories or bundles must be skipped by the host.

Plug-in Icons

Some hosts may wish to display an icon associated with the effects in
a plug-in binary on
their interfaces. Any such icon must be in the Portable Network Graphics
format (see http://www.libpng.org/) and must contain 32 bits of colour,
including an alpha channel. Ideally it should be at least 128x128
pixels.

Note that a single plug-in binary may define more than one effect,
when OfxGetNumberOfPlugins returns a
value greater than 1. These icons are specific to each effect within
the plug-in, and are named according to what is returned from
OfxGetPlugin.

Host applications should dynamically resize the icon to fit their
preferred icon size. The icon should not have its aspect changed,
rather the host should fill with some appropriate colour any blank areas
due to aspect mismatches.

Ideally plug-in developers should not render the plug-in or effect’s
name into the icon, as this may be changed by the resource file,
especially for internationalisation purposes. Hosts should thus
present the plug-in and/or effect’s name next to the icon in some way.

The icon file must be named as the corresponding pluginIdentifier field
from the OfxPlugin, postpended with ‘.png’ and be placed in the
resources sub-directory.

Some hosts may use a scalable vector icon if provided; it should be in
SVG format and be named and located just like the .png icon but
with a .svg suffix.

Externally Specified Resources

Some plug-ins may supply an externally specified resource file for
particular hosts. Typically this is for tasks such as
internationalising interfaces, tweaking user interfaces for specific
hosts, and so on. These are XML files and have DTD associated with the
specific API, for example OFX Image Effect DTD is found in
ofx.dtd.

The XML resource file is installed in the Resources subdirectory of
the bundle hierarchy. Its name should be NAME.xml, where name is the
base name of the bundle folder and the effect binary.

Plug-ins are free to include other resources in the Resources
subdirectory.

The Image Effect API

Introduction

In general, image effects plug-ins take zero or more input clips and
produce an output clip. So far so simple, however there are many devils
hiding in the details. Several supporting suites are required from the
host and the plug-in needs to respond to a range of actions to work
correctly. How an effect is intended to be used also complicates the
issue, forcing sets of behaviours depending on the context of an effect.

Plug-ins that implement the image effect API set the pluginApi
member of the OfxPlugin struct returned by the global
OfxGetPlugin to be:

	
kOfxImageEffectPluginApi

	String used to label OFX Image Effect Plug-ins.

Set the pluginApi member of the OfxPluginHeader inside any OfxImageEffectPluginStruct to be this so that the host knows the plugin is an image effect.

The current version of the API is 1. This is enough to label the plug-in as an image effect
plug-in.

Image Effect API Header Files

The header files used to define the OFX Image Effect API are…

	ofxCore.h [https://github.com/ofxa/openfx/blob/master/include/ofxCore.h]
Provides the core definitions of the general OFX architecture that
allow the bootstrapping of specific APIs, as well as several core actions,

	
	ofxProperty.h [https://github.com/ofxa/openfx/blob/master/include/ofxProperty.h]
	Provides generic property fetching suite used to get and set values about objects in the API,

	ofxParam.h [https://github.com/ofxa/openfx/blob/master/include/ofxParam.h]
Provides the suite for defining user visible parameters to an
effect

	ofxMultiThread.h [https://github.com/ofxa/openfx/blob/master/include/ofxMultiThread.h]
Provides the suite for basic multi-threading capabilities

	ofxInteract.h [https://github.com/ofxa/openfx/blob/master/include/ofxInteract.h]
Provides the suite that allows a plug-in to use OpenGL to draw their own interactive GUI tools

	ofxKeySyms.h [https://github.com/ofxa/openfx/blob/master/include/ofxKeySyms.h]
Provides key symbols used by ‘Interacts’ to represent keyboard events

	ofxMemory.h [https://github.com/ofxa/openfx/blob/master/include/ofxMemory.h]
Provides a simple memory allocation suite,

	ofxMessage.h [https://github.com/ofxa/openfx/blob/master/include/ofxMessage.h]
Provides a simple messaging suite to communicate with an end user

	ofxImageEffect.h [https://github.com/ofxa/openfx/blob/master/include/ofxImageEffect.h]
Defines a suite and set of actions that draws all the above together to create an visual effect plug-in.

	ofxDrawSuite.h [https://github.com/ofxa/openfx/blob/master/include/ofxDrawSuite.h]
Provides an optional suite that allows a plug-in to draw their own interactive GUI tools without using OpenGL

These contain the suite definitions, property definitions and action
definitions that are used by the API.

Actions Used by the API

All image effect plug-ins have a main entry point. This is used to trap
all the standard actions used to drive the plug-in. They can also have
other optional entry points that allow the plug-in to create custom user
interface widgets. These interact entry points are specified during
the two description actions.

The following actions can be passed to a plug-in’s main entry point…

	The Generic Load Action
called just after a plug-in is first loaded,

	The Generic Unload Action
called just before a plug-in is unloaded,

	The Generic Describe Action
called to describe a plug-in’s behaviour to a host,

	The Generic Create Instance Action
called just after an instance is created,

	The Generic Destroy Instance Action
called just before an instance is destroyed,

	The Generic Begin/End Instance Changed Actions
, a pair of actions used to bracket a set of Instance Changed
actions,

	The Generic Instance Changed Action
an action used to indicate that a value has changed in a plug-in
instance,

	The Generic Purge Caches Action
called to have the plug-in delete any temporary private data caches
it may have,

	The Sync Private Data Action
called to have the plug-in sync any private state data back to its
data set,

	The Generic Begin/End Instance Edit Actions
a pair of calls that are used to bracket the fact that a user
interface has been opened on an instance and it is being edited,

	The Begin Sequence Render Action
where a plug-in is told that it is about to render a sequence of
images,

	The Render Action
where a plug-in is told that it is to render an output image,

	The End Sequence Render Action
where a plug-in is told it has finished rendering a sequence of
images,

	The Describe In Context Action
used to have a plug-in describe itself in a specific context,

	The Get Region of Definition Action
where an instance gets to state how big an image it can create,

	The Get Regions Of Interest Action
where an instance gets to state how much of its input images it needs
to create a give output image,

	The Get Frames Needed Action
where an instance gets to state how many frames of input it needs on
a given clip to generate a single frame of output,

	The Is Identity Action
where an instance gets to state that its current state does not
affect its inputs, so that the output can be directly copied from an
input clip,

	The Get Clip Preferences Action
where an instance gets to state what data and pixel types it wants on
its inputs and will generate on its outputs,

	The Get Time Domain Action
where a plug-in gets to state how many frames of data it can
generate.

Main Objects Used by the API

The image effect API uses a variety of different objects. Some are
defined via blind data handles, others via property sets, and some by a
combination of the two. These objects are…

	Host Descriptor
- a descriptor object used by a host to describe its behaviour to a
plug-in,

	Image Effect Descriptor
- a descriptor object used by a plug-in to describe its behaviour to
a host,

	Image Effect Instance
- an instance object maintaining state about an image effect,

	Clip Descriptor
- a descriptor object for a sequence of images used as input or
output a plug-in may use,

	Clip Instance
- a instance object maintaining state about a sequence of images used
as input or output to an effect instance,

	Parameter Descriptor
- a descriptor object used to specify a user visible parameter in an
effect descriptor,

	Parameter Instance
- an instance object that maintains state about a user visible
parameter in an effect instance,

	Parameter Set Descriptor
- a descriptor object used to specify a set of user visible
parameters in an effect descriptor,

	Parameter Set Instance
- an instance object that maintains state about a set of user visible
parameters in an effect instance,

	Image Instance
- a instance object that maintains state about a 2D image being
passed to an effect instance.

	Interact Descriptor
- which describes a custom openGL user interface, for example an
overlay over the inputs to an image effect. These have a separate
entry point to an image effect.

	Interact Instance
- which holds the state on a custom openGL user interface. These have
a separate entry point to an image effect.

Host Descriptors

The host descriptor is represented by the properties found on the host property set handle in the
OfxHost struct. The complete set of read only
properties are found in the section Properties on the Image Effect
Host.

These sets of properties are there to describe the capabilities of the
host to a plug-in, thus giving a plug-in the ability to modify its
behaviour depending on the capabilities of the host.

A host descriptor is valid while a plug-in is loaded.

Effects

An effect is an object in the OFX Image Effect API that represents an
image processing plug-in. It has associated with it a set of properties,
a set of image clips and a set of parameters. These component objects of
an effect are defined and used by an effect to do whatever processing it
needs to. A handle to an image effect (instance or descriptor) is passed
into a plug-in’s main entry point handle
argument:

	
typedef struct OfxImageEffectStruct *OfxImageEffectHandle

	Blind declaration of an OFX image effect.

The functions that directly manipulate an image effect handle are
specified in the OfxImageEffectSuiteV1 found
in the header file ofxImageEffect.h [https://github.com/ofxa/openfx/blob/master/include/ofxImageEffect.h].

Effect Descriptors

An effect descriptor is an object of type OfxImageEffectHandle
passed into an effect’s main entry point
handle argument. The two actions it is passed to are:

	kOfxActionDescribe

	kOfxImageEffectActionDescribeInContext

A effect descriptor does not refer to a ‘live’ effect, it is a handle
which the effect uses to describe itself back to the host. It does this
by setting a variety of properties on an associated property handle, and
specifying a variety of objects (such as clips and parameters) using
functions in the available suites.

Once described, a host should cache away the description in some manner
so that when an instance is made, it simply looks at the description and
creates the necessary objects needed by that instance. This stops the
overhead of having every instance be forced to describe itself over the
API.

Effect descriptors are only valid in a effect for the duration of the
instance they were passed into.

The properties on an effect descriptor can be found in the section
Properties on an Effect Descriptor.

Effect Instances

A effect instance is an object of type OfxImageEffectHandle passed
into an effect’s main entry point handle
argument. The handle argument should be statically cast to this
type. It is passed into all actions of an image effect that a descriptor
is not passed into.

The effect instance represents a ‘live’ instance of an effect. Because
an effect has previously been described, via a effect descriptor, an
instance does not have to respecify the parameters, clips and properties
that it needs. These means, that when an instance is passed to an
effect, all the objects previously described will have been created.

Generally multiple instances of an effect can be in existence at the
same time, each with a different set of parameters, clips and
properties.

Effect instances are valid between the calls to
kOfxActionCreateInstance and
kOfxActionDestroyInstance, for which it
is passed as the handle argument.

The properties on an effect instance can be found in the section
Properties on an Effect Instance.

Clips

A clip is a sequential set of images attached to an effect. They are
used to fetch images from a host and to specify how a plug-in wishes to
manage the sequence.

Clip Descriptors

Clip descriptors are returned by the
OfxImageEffectSuiteV1::clipDefine() function.
They are used during the kOfxActionDescribe action by
an effect to indicate the presence of an input or output clip and how
that clip behaves.

A clip descriptor is only valid for the duration of the action it was
created in.

The properties on a clip descriptor can be found in the section
Properties on a Clip Descriptor.

Clip Instances

	
typedef struct OfxImageClipStruct *OfxImageClipHandle

	Blind declaration of an OFX image effect.

Clip instances are returned by the
OfxImageEffectSuiteV1::clipGetHandle() function.
They are are used to access images and and manipulate properties on an effect instance’s input and output clips.
A variety of functions in the OfxImageEffectSuiteV1 are used to manipulate them.

A clip instance is valid while the related effect instance is valid.

The properties on a clip instance can be found in the section
Properties on a Clip Instance.

Parameters

Parameters are user visible objects that an effect uses to specify its
state, for example a floating point value used to control the blur size
in a blur effect. Parameters (both descriptors and instances) are
represented as blind data handles of type:

	
typedef struct OfxParamStruct *OfxParamHandle

	Blind declaration of an OFX param.

Parameter sets are the collection of parameters that an effect has
associated with it. They are represented by the type
OfxParamSetHandle. The contents of an effect’s parameter set are
defined during the
:c:macro:`kOfxImageEffectActionDescribeInContext action.
Parameters cannot be dynamically added to, or deleted from an effect instance.

Parameters can be of a wide range of types, each of which have their own
unique capabilities and property sets. For example a colour parameter
differs from a boolean parameter.

Parameters and parameter sets are manipulated via the calls and
properties in the OfxParameterSuiteV1 specified
in ofxParam.h [https://github.com/ofxa/openfx/blob/master/include/ofxParam.h].
The properties on parameter instances and
descriptors can be found in the section Properties on Parameter
Descriptors and Instances.

Parameter Set Descriptors

Parameter set descriptors are returned by the
:cpp:func`OfxImageEffectSuiteV1::getParamSet` function.
This returns a handle associated with an image effect
descriptor which can be used by the parameter suite routines to create
and describe parameters to a host.

A parameter set descriptor is valid for the duration of the
kOfxImageEffectActionDescribeInContext
action in which it is fetched.

Parameter Descriptors

Parameter descriptors are returned by the
OfxParameterSuiteV1::paramDefine() function.
They are used to define the existence of a parameter to the
host, and to set the various attributes of that parameter. Later, when
an effect instance is created, an instance of the described parameter
will also be created.

A parameter descriptor is valid for the duration of the
kOfxImageEffectActionDescribeInContext
action in which it is created.

Parameter Set Instances

Parameter set instances are returned by the
OfxImageEffectSuiteV1::getParamSet() function.
This returns a handle associated with an image effect instance
which can be used by the parameter suite routines to fetch and describe
parameters to a host.

A parameter set handle instance is valid while the associated effect
instance remains valid.

Parameter Instances

Parameter instances are returned by the
OfxParameterSuiteV1::paramGetHandle() function.
This function fetches a previously described parameter back
from the parameter set. The handle can then be passed back to the
various functions in the
OfxParameterSuite1V to manipulate it.

A parameter instance handle remains valid while the associated effect
instance remains valid.

Image Instances

An image instance is an object returned by the
OfxImageEffectSuiteV1::clipGetImage() function.
This fetches an image out of a clip and returns it as a
property set to the plugin. The image can be accessed by looking up the
property values in that set, which includes the data pointer to the
image.

An image instance is valid until the effect calls
OfxImageEffectSuiteV1::clipReleaseImage()
on the property handle. The effect must release all fetched images
before it returns from the action.

The set of properties that make up an image can be found in the section
Properties on an Image.

Interacts

An interact is an OFX object that is used to draw custom user interface
elements, for example overlays on top of a host’s image viewer or custom
parameter widgets. Interacts have their own main entry
point, which is separate to the effect’s main entry
point. Typically an interact’s main entry point is specified as a
pointer property on an OFX object, for example the
kOfxImageEffectPluginPropOverlayInteractV1
property on an effect descriptor.

The functions that directly manipulate interacts are in the OfxInteractSuiteV1 found in the header file
ofxInteract.h [https://github.com/ofxa/openfx/blob/master/include/ofxInteract.h] , as well as the properties and specific actions that
apply to interacts.

Interact Descriptors

Interact descriptors are blind handles passed to the kOfxActionDescribeInteract sent to an interact’s separate
main entry point. They should be cast to the type OfxInteractHandle.

The properties found on a descriptor are found in section Properties on
Interact Descriptors.

Interact Instances

Interact instances are blind handles passed to all actions but the
kOfxActionDescribe sent to an interact’s
separate main entry point. They should be cast to the type

	
typedef struct OfxInteract *OfxInteractHandle

	Blind declaration of an OFX interactive gui.

The properties found on an instance are found in section Properties on
Interact Instance.

Image Processing Architectures

OFX supports a range of image processing architectures. The simpler ones
being special cases of the most complex one. Levels of support, in both
plug-in and host, are signalled by setting appropriate properties in the
plugin and host.

This chapter describes the most general architecture that OFX can
support, with simpler cases just being specialisations of the general
case.

The Image Plane

At it’s most generalised, OFX allows for a complex imaging architecture
based around an infinite 2D plane on which we are filling in pixels.

Firstly, there is some subsection of this infinite plane that the user
wants to be the end result of their work, call this the project extent.
The project extent is always rooted, on its bottom left, at the origin
of the image plane. The project extent defines the upper right hand
corner of the project window. For example a PAL sized project spans (0,
0) to (768, 576) on the image plane.

We define an image effect as something that can fill in a rectangle of
pixels in this infinite plane, possibly using images defined at other
locations on this image plane.

Regions of Definition

An effect has a Region of Definition (RoD), this is is the maximum
area of the plane that the effect can fill in. for example: a ‘read
source media’ effect would only be able to fill an area as big as it’s
source media. An effect’s RoD may need to be based on the RoD of its
inputs, for example: the RoD of a contrast/brightness colour corrector
would generally be the RoD of it’s input, while the RoD of a rotation
effect would be bigger than that of it’s input image.

The purpose of the
kOfxImageEffectActionGetRegionOfDefinition
action is for the host to ask an effect what its region of definition
is. An effect calculates this by looking at its input clips and the
values of its current parameters.

Hosts are not obliged to render all an effects RoD, as it may have fixed
frame sizes, or any number of other issues.

Infinite RoDs

Infinite RoDs are used to indicate an effect can fill pixels in anywhere
on the image plane it is asked to. For example a no-input noise
generator that generates random colours on a per pixel basis. An
infinite RoD is flagged by setting the minimums to be:

	
kOfxFlagInfiniteMin

	Used to flag infinite rects. Set minimums to this to indicate infinite.

This is effectively INT_MIN

and the maxmimums to be:

	
kOfxFlagInfiniteMax

	Used to flag infinite rects. Set minimums to this to indicate infinite.

This is effectively INT_MAX.

for both double and integer rects. Hosts and plug-ins need to be
infinite RoD aware. Hosts need to clip such RoDs to an appropriate
rectangle, typically the project extent. Plug-ins need to check for
infinite RoDs when asking input clips for them and to pass them through
unless they explicitly clamp them. To indicate an infinite RoD set it as
indicated in the following code snippet.

outputRoD.x1 = kOfxFlagInfiniteMin;
outputRoD.y1 = kOfxFlagInfiniteMin;
outputRoD.x2 = kOfxFlagInfiniteMax;
outputRoD.y2 = kOfxFlagInfiniteMax;

Regions Of Interest

An effect will be asked to fill in some region of this infinite plane.
The section it is being asked to fill in is called the Region of
Interest (RoI).

Before an effect has been asked to process a given RoI, it will be asked
to specify the area of each input clip it will need to process that
area. For example: a simple colour correction effect only needs as much
input as it does output, while a blur will need an area that is larger
than the specified RoI by a border of the same width as the blur radius.

The purpose of the
kOfxImageEffectActionGetRegionsOfInterest
action is for the host to ask an effect what areas it needs from each
input clip, to render a specific output region. An effect needs to
examine its set of parameters and the region it has been asked to render
to determine how much of each input clip it needs.

Tiled Rendering

Tiling is the ability of an effect to manage images that are less than
full frame (or in our current nomenclature, less than the full Region of
Definition). By tiling the images it renders, a host will render an
effect in several passes, say by doing the bottom half, then the top
half.

Hosts may tile rendering for a variety of reasons. Usually it is in an
attempt to reduce memory demands or to distribute rendering of an effect
to several different CPUs or computers.

Effects that in effect only perform per pixel calculations (for example
a simple colour gain effect) tile very easily. However in the most
general case for effects, tiling may be self defeating, as an effect, in
order to render a tile, may need significantly more from its input clips
than the tile in question. For example, an effect that performs an 2D
transform on its input image, may need to sample all that image even
when rendering a very small tile on output, as the input image may have
been scaled down so that it only covers a few pixels on output.

Tree Based Architectures

The most general compositing hosts allow images to be of any size at any
location on our image plane. They also plumb the output of effects into
other effects, to create effect trees. When evaluating this tree of
effects, a general host will want to render the minimum number of pixels
it needs to fill in the final desired image. Typically the top level of
this compositing tree is being rendered at a certain project size, for
example PAL SD, 2K film and so on. This is where the RoD/RoI calls come
in handy.

The host asks the top effect how much picture information it can
produce, which in turn asks effects below it their RoDs and so on until
leaf effects are reached, which report back up the tree until the top
effect calculates its RoD and reports back to the host. The host
typically clips that RoD to its project size.

Having determined in this way the window it wants rendered at the top
effect, the host asks the top node the regions of interest on each of
it’s inputs. This again propagates down the effect tree until leaf nodes
are encountered. These regions of interest are cached at effect for
later use.

At this point the host can start rendering, from the bottom of the tree
upwards, by asking each effect to fill in the region of interest that
was previously specified in the RoI walk. These regions are then passed
to the next level up to render and so on.

Another complication is tiling. If a host tiles, it will need to walk
the tree and perform the RoI calculation for each tile that it renders.

The details may differ on specific hosts, but this is more or less the
most generic way compositing hosts currently work.

Simpler Architectures

The above architecture is quite complex, as the inputs supplied can lie
anywhere on the image plane, as can the output, and they can be
subsections of the ‘complete’ image. Not all hosts work in this way,
generally it is only the more advance compositing systems working on
large resolution images.

Some other systems allow for images to be anywhere on the image plane,
but always pass around full RoD images, never tiles.

The simplest systems, don’t have any of of the above complexity. The
RoDs, RoIs, images and project sizes in such systems are exactly the
same, always. Often these are editing, as opposed to compositing,
systems.

Similarly, some plugin effects cannot handle sub RoD images, or even
images not rooted at the origin.

The OFX architecture is meant to support all of them. Assuming a plugin
supports the most general architecture, it will trivially run on hosts
with simpler architectures. However, if a plugin does not support tiled,
or arbitrarily positioned images, they may not run cleanly on hosts that
expect them to do so.

To this end, two properties are provided that flag the capabilities of a
plugin or host…

	kOfxImageEffectPropSupportsMultiResolution
which indicates support for images of differing sizes not centred
on the origin,

	kOfxImageEffectPropSupportsTiles
which indicates support for images that contain less than full
frame pixel data

A plug-in should flag these appropriately, so that hosts know how to
deal with the effect. A host can either choose to refuse to load a
plugin, or, preferentially, pad images with an appropriate amount of
black/transparent pixels to enable them to work.

The kOfxImageEffectActionGetRegionsOfInterest is redundant for
plugins that do not support tiled rendering, as the plugin is asking
that it be given the full Region of Definition of all its inputs. A host
may have difficulty doing this (for example with an input that is
attached to an effect that can create infinite images such as a random
noise generator), if so, it should clamp images to some a size in some
manner.

The RoD/RoI actions are potentially redundant on simpler hosts. For
example fixed frame size hosts. If a host has no need to call these
actions, it simply should not.

Image Effect Contexts

How an image effect is used by an end user affects how it should
interact with a host application. For example an effect that is to be
used as a transition between two clips works differently to an effect
that is a simple filter. One must have two inputs and know how much to
mix between the two input clips, the other has fewer constraints on it.
Within OFX we have standardised several different uses and have called
them contexts.

More specifically, a context mandates certain behaviours from an effect
when it is described or instantiated in that context. The major issue is
the number of input clips it takes, and how it can interact with those
input clips.

All OFX contexts have a single output clip and zero or more input clips.
The current contexts defined in OFX are:

	kOfxImageEffectContextGenerator

No compulsory input clips used by a host to create imagery from scratch, e.g: a noise generator

	kOfxImageEffectContextFilter

	A single compulsory input clip. A traditional ‘filter effect’ that transforms a single input in
	some way, e.g: a simple blur

	kOfxImageEffectContextTransition

Two compulsory input clips and a compulsory ‘Transition’ double parameter
Used to perform transitions between clips, typically in editing
applications, eg: a cross dissolve,

	kOfxImageEffectContextPaint

Two compulsory input clips, one image to paint onto, the other a mask to control where the effect happens
Used by hosts to use an effect under a paint brush

	kOfxImageEffectContextRetimer

A single compulsory input clip, and a compulsory ‘SourceTime’ double parameter
Used by a host to change the playback speed of a clip,

	kOfxImageEffectContextGeneral

An arbitrary number of inputs, generally used in a ‘tree’ compositing environment, a catch all context.

A host or plug-in need not support all contexts. For example a host that
does not have any paint facility within it should not need to support
the paint context, or a simple blur effect need not support the retimer
context.

An effect may say that it can be used in more than one context, for
example a blur effect that acts as a filter, with a single input to
blur, and a general effect, with an input to blur and an optional input
to act as a mask to attenuate the blur. In such cases a host should
choose the most appropriate context for the way that host’s
architecture. With our blur example, a tree based compositing host
should simply ignore the filter context and always use it in the general
context.

Plugins and hosts inform each other what contexts they work in via the
multidimensional
kOfxImageEffectPropSupportedContexts
property.

A host indicates which contexts it supports by setting the
kOfxImageEffectPropSupportedContexts property in the global host
descriptor. A plugin indicates which contexts it supports by setting
this on the effect descriptor passed to the
kOfxActionDescribe action.

Because a plugin can work in different ways, it needs the ability to
describe itself to the host in different ways. This is the purpose of
the
kOfxImageEffectActionDescribeInContext
action. This action is called once for each context that the effect
supports, and the effect gets to describe the input clips and parameters
appropriate to that context. This means that an effect can have
different sets of parameters and clips in different contexts, though it
will most likely have a core set of parameters that it uses in all
contexts. From our blur example, both the filter and general contexts
would have a ‘blur radius’ parameter, but the general context might have
an ‘invert matte’ parameter.

During the kOfxImageEffectActionDescribeInContext action, an effect
must describe all clips and parameters that it intends to use. This
includes the mandated clips and parameters for that context.

A plugin instance is created in a specific contex which will not changed
over the lifetime of that instance. The context can be retrieved from
the instance via the
kOfxImageEffectPropContext
property on the instance handle.

The Generator Context

A generator context is for cases where a plugin can create images
without any input clips, eg: a colour bar generator.

In this context, a plugin has the following mandated clips,

	an output clip named Output

Any input clips that are specified must be optional.

A host is responsible for setting the initial preferences of the output
clip, it must do this in a manner that is transparent to the plugin. So
the pixel depths, components, fielding, frame rate and pixel aspect
ratio are under the control of the host. How it arrives at these is a
matter for the host, but as a plugin specifies what components it can
produce on output, as well as the pixel depths it supports, the host
must choose one of these.

Generators still have Regions of Definition. This should generally be,

	based on the project size eg: an effect that renders a 3D sky
simulation,

	based on parameter settings eg: an effect that renders a circle in an
arbitrary location,

	infinite, which implies the effect can generate output anywhere on
the image plane.

The pixel preferences action is constrained in this context by the
following,

	a plugin cannot change the component type of the Output clip,

The Filter Context

A filter effect is the ordinary way most effects are used with a single
input. They allow track or layer based hosts that cannot present extra
input to use an effect.

In this context, a plugin has the following mandated objects…

	an input clip named Source

	an output clip named Output

Other input clips may be described, which must all be optional. However
there is no way to guarantee that all hosts will be able to wire in such
clips, so it is suggested that in cases where effects can take single or
multiple inputs, they expose themselves in the filter context with a
single input and the general context with multiple inputs.

The pixel preferences action is constrained in this context by the
following,

	a plugin cannot change the component type of the Output clip, it
will always be the same as the Source clip,

The Transition Context

Transitions are effects that blend from one clip to another over time,
eg: a wipe or a cross dissolve.

In this context, a plugin has the following mandated objects…

	an input clip names ‘SourceFrom’

	an input clip names ‘SourceTo’

	an output clip named Output

	a single double parameter called ‘Transition’ (see
Mandated Parameters
)

Any other input clips that are specified must be optional. Though it is
suggested for simplicity’s sake that only the two mandated clips be
used.

The ‘Transition’ parameter cannot be labelled, positioned or controlled
by the plug-in in anyway, it can only have it’s value read, which will
have a number returned between the value of 0 and 1. This number
indicates how far through the transition the effect is, at 0 it should
output all of ‘SourceFrom’, at 1 it should output all of ‘SourceTo’, in
the middle some appropriate blend.

The pixel preferences action is constrained in this context by the
following,

	the component types of the “SourceFrom”, “SourceTo” and Output
clips will always be the same,

	the pixel depths of the “SourceFrom”, “SourceTo” and Output clips
will always be the same,

	a plugin cannot change any of the pixel preferences of any of the
clips.

The Paint Context

Paint effects are effects used inside digital painting system, where the
effect is limited to a small area of the source image via a masking
image. Perhaps ‘brush’ would have been a better choice for the name of
the context.

In this context, a plugin has the following mandated objects…

	an input clip names Source,

	an input clip names Brush, the only component type it supports is
‘alpha’,

	an output clip named Output.

Any other input clips that are specified must be optional.

The masking images consists of pixels from 0 to the white point of the
pixel depth. Where the mask is zero the effect should not occur, where
the effect is whitepoint the effect should be ‘full on’, where it is
grey the effect should blend with the source in some manner.

The masking image may be smaller than the source image, even if the
effect states that it cannot support multi-resolution images.

The pixel preferences action is constrained in this context by the
following,

	the pixel depths of the Source, Brush and Output clips will
always be the same,

	the component type of Source and Output will always be the same,

	a plugin cannot change any of the pixel preferences of any of the
clips.

The Retimer Context

The retimer context is for effects that change the length of a clip by
interpolating frames from the source clip to create an inbetween output
frame.

In this context, a plugin has the following mandated objects…

	an input clip names Source

	an output clip named Output

	a 1D double parameter named ‘SourceTime’ (see
Mandated Parameters
)

Any other input clips that are specified must be optional.

The ‘SourceTime’ parameter cannot be labelled, positioned or controlled
by the plug-in in anyway, it can only have it’s value read. Its value is
how the source time to maps to the output time. So if the output time is
‘3’ and the ‘SourceTime’ parameter returns 8.5 at this time, the
resulting image should be an interpolated between source frames 8 and 9.

The pixel preferences action is constrained in this context by the
following,

	the pixel depths of the Source and Output clips will always be
the same,

	the component type of Source and Output will always be the same,

	a plugin cannot change any of the pixel preferences of any of the
clips.

The General Context

The general context is to some extent a catch all context, but is
generally how a ‘tree’ effect should be instantiated. It has no
constraints on its input clips, nor on the pixel preferences actions.

In this context, has the following mandated objects…

	an output clip named Output

Parameters Mandated In A Context

The retimer and transition context both mandate a parameter be declared,
the double params ‘SourceTime’ and ‘Transition’. The purpose of these
parameters is for the host to communicate with the plug-in, they are
not meant to be treated as normal parameters, exposed on the user
plug-in’s user interface.

For example, the purpose of a transition effect is to dissolve in some
interesting way between two separate clips, under control of the host
application. Typically this is done on systems that edit. The mandated
‘Transition’ double pseudo-parameter is not a normal one exposed on the
plug-in UI, rather it is the way the host indicates how far through the
transition the effect is. For example, think about two clips on a time
line based editor with a transition between them, the host would set the
value value of the ‘Transition’ parameter implicitly by how far the
frame being rendered is from the start of the transition, something
along the lines of…

Transition = (currrentFrame - startOfTransition)/lengthOfTransition;

This means that the host is completely responsible for any user
interface for that parameter, either implicit (as in the above editing
example) or explicit (with a curve).

Similarly with the ‘SourceTime’ double parameter in the retimer context.
It is up to the host to provide a UI for this, either implicitly (say by
stretching a clip’s length on the time line) or via an explicit curve.
Note that the host is not limited to using a UI that exposes the
‘SourceTime’ as a curve, alternately it could present a ‘speed’
parameter, and integrate that to derive a value for ‘SourceTime’.

Thread and Recursion Safety

Hosts are generally multi-threaded, those with a GUI will most likely
have an interactive thread and a rendering thread, while any host
running on a multi-CPU machine may have a render thread per CPU. Host
may batch effects off to a render farm, where the same effect has
separate frames rendered on completely different machines. OFX needs to
address all these situations.

Threads in the host application can be broken into two categories…

	main theaads
, where any action may be called

	render threads
where only a subset of actions may be called.

For a given effect instance, there can be only one main thread and zero
or more render threads. An instance must be able to handle simultaneous
actions called on the main and render threads. A plugin can control the
number of simultaneous render threads via the
kOfxImageEffectPluginRenderThreadSafety
effect descriptor property.

The only actions that can be called on a render thread are…

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	kOfxImageEffectActionIsIdentity

	kOfxImageEffectActionGetFramesNeeded

	kOfxImageEffectActionGetRegionOfDefinition

	kOfxImageEffectActionGetRegionsOfInterest

If a plugin cannot support this multi-threading behaviour, it will need
to perform explicit locking itself, using the locking mechanisms in the
suites defined in ofxMultiThread.h [https://github.com/ofxa/openfx/blob/master/include/ofxMultiThread.h].

This will also mean that the host may need to perform locking on the
various function calls over the API. For example, a main and render
thread may both simultaneously attempt to access a parameter from a
single effect instance. The locking should…

	block write/read access

	not block on read/read access

	be fine grained at the level of individual function calls,

	be transparent to the plugin, so it will block until the call
succeeds.

For example, a render thread will only cause a parameter to lock out
writes only for the duration of the call that reads the parameter, not
for the duration of the whole render action. This will allow a main
thread to continue writing to the parameter during a render. This is
especially important if you have a custom interactive GUI that you want
to keep working during a render call.

Note that a main thread should generally issue an abort to any linked
render thread when a parameter or other value affecting the effect (eg:
time) has been changed by the user. A re-render should then be issued so
that a correct frame is created.

How an effect handles simulanteous calls to render is dealt with in
the multi-thread rendering section.

Many hosts get around the problem of sharing a single instance in a UI
thread and a render thread by having two instances, one for the user to
interact with and a render only one that shadows the UI instance.

Recursive Actions

When running on a main thread, some actions may end up being called
recursively. A plug-in must be able to deal with this. For example
consider the following sequence of events in a plugin…

	user sets parameter A in a GUI

	host issues
kOfxActionInstanceChanged
action

	plugin traps that and sets parameter B

	host issues a new
kOfxActionInstanceChanged
action for parameter B

	plugin traps that and changes some internal private state and
requests the overlay redraw itself

	kOfxInteractActionDraw
issued to the effect’s overlay

	plugin draws overlay

	kOfxInteractActionDraw
returns

	kOfxActionInstanceChanged
action for parameter B returns

	kOfxActionInstanceChanged
action returns

The image effect actions which may trigger a recursive action call on a
single instance are…

	kOfxActionBeginInstanceChanged

	kOfxActionInstanceChanged

	kOfxActionEndInstanceChanged

	kOfxActionSyncPrivateData

The interact actions which may trigger a recursive action to be called
on the associated plugin instance are…

	kOfxInteractActionGainFocus

	kOfxInteractActionKeyDown

	kOfxInteractActionKeyRepeat

	kOfxInteractActionKeyUp

	kOfxInteractActionLoseFocus

	kOfxInteractActionPenDown

	kOfxInteractActionPenMotion

	kOfxInteractActionPenUp

The image effect actions which may be called recursively are…

	kOfxActionBeginInstanceChanged

	kOfxActionInstanceChanged

	kOfxActionEndInstanceChanged

	kOfxImageEffectActionGetClipPreferences

	kOfxImageEffectActionGetRegionOfDefinition
(as a result of calling

OfxImageEffectSuiteV1::clipGetImage()

from
kOfxActionInstanceChanged
)

	kOfxImageEffectActionGetRegionsOfInterest
(as a result of calling
OfxImageEffectSuiteV1::clipGetImage()
from
kOfxActionInstanceChanged
)

The interact actions which may be called recursively are…

	kOfxInteractActionDraw

Coordinate Systems

Spatial Coordinates

All OFX spatial coordinate systems have the positive Y axis pointing up,
and the positive X axis pointing right.

As stated above, images are simply some rectangle in a potentially
infinite plane of pixels. However, this is an idealisation of what
really goes on, as images composed of real pixels have to take into
account pixel aspect ratios and proxy render scales, as such they will
not be in the same space as the image plane. To deal with this, OFX
has three spatial coordinate systems

	The Canonical Coordinate System
which describes the idealised image plane

	The Pixel Coordinate System
which describes coordinates in addressable pixels

	The Normalised Canonical Coordinate System
which allows for resolution independent description of parameters

Canonical Coordinates

The idealised image plane is always in a coordinate system of square
unscaled pixels. For example a PAL D1 frame occupies (0,0) to (768,576).
We call this the Canonical Coordinate System.

Many operations take place in canonical coordinates, parameter values
are expressed in them while the and RoD and RoI actions report their
values back in them.

The Canonical coordinate system is always referenced by double floating
point values, generally via a OfxRectD structure:

	
struct OfxRectD

	Defines two dimensional double region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
double x1

	

	
double y1

	

	
double x2

	

	
double y2

	

Pixel Coordinates

Real images, where we have to deal with addressable pixels in memory,
are in a coordinate system of non-square proxy scaled integer values. So
a PAL D1 image, being renderred as a half resolution proxy would be
(0,0) to (360, 288), which takes into account both the pixel aspect
ratio of 1.067 and a scale factor of 0.5f. We call this the Pixel
Coordinate System.

The Pixel coordinate system is always referenced by integer values,
generally via a OfxRectI structure. It is used when referring to
operations on actual pixels, and so is how the bounds of images are
described and the render window passed to the render action.

Mapping Between The Spatial Coordinate Systems

To map between the two the pixel aspect ratio and the render scale need
to be known, and it is a simple case of multiplication and rounding.
More specifically, given…

	pixel aspect ratio,
PAR
, found on the image property
kOfxImagePropPixelAspectRatio

	render scale in X
SX
, found on the first dimension of the effect property
kOfxImageEffectPropRenderScale

	render scale in Y
SY
, found on the second dimension of the effect property
kOfxImageEffectPropRenderScale

	field scale in Y
FS
, this is

	0.5 if the image property
kOfxImagePropField
is
kOfxImageFieldLower
or
kOfxImageFieldUpper

	1.0 otherwise.

To map an X and Y coordinates from Pixel coordinates to Canonical
coordinates, we perform the following multiplications…

X' = (X * PAR)/SX
Y' = Y/(SY * FS)

To map an X and Y coordinates from Canonical coordinates to Pixel
coordinates, we perform the following multiplications…

X' = (X * SX)/PAR
Y' = Y * SY * FS

The Normalized Coordinate System

Note, normalised parameters and the normalised coordinate system are
being deprecated in favour of spatial
parameters which can handle
the project rescaling without the problems of converting to/from
normalised coordinates.

On most editing an compositing systems projects can be moved on
resolutions, for example a project may be set up at high definition then
have several versions rendered out at different sizes, say a PAL SD
version, an NTSC SD version and an HD 720p version.

This causes problems with parameters that describe spatial coordinates.
If they are expressed as absolute positions, the values will be
incorrect as the project is moved from resolution to resolution. For
example, a circle drawn at (384,288) in PAL SD canonical coordinates
will be in the centre of the output. Re-render that at 2K film, it will
be in the bottom left hand corner, which is probably not the correct
spot.

To get around this, OFX allows parameters to be flagged as normalised,
which is a resolution independent method of representing spatial
coordinates. In this coordinate system, a point expressed as (0.5, 0.5)
will appear in the centre of the screen, always.

To transform between normalised and canonical coordinates a simple
linear equation is required. What that is requires a certain degree of
explanation. It involves three two dimensional values…

	the project extent
the resolution of the project, eg: PAL SD

	the project size
how much of that is used by imagery, eg: the letter box area in a
16:9 PAL SD project

	the project offset
the bottom left corner of the extent being used, eg: the BL corner of
a 16:9 PAL SD project

As described above, the project extent is the section of the image plane
that is covered by an image that is the desired output of the project,
so for a PAL SD project you get an extent of 0,0 to 768,576. As the
project is always rooted at the origin, so the extent is actually a
size.

Project sizes and offsets are a bit less obvious. Consider a project
that is going to be output as PAL D1 imagery, the extent will be 0,0 to
768,576. However our example is a letter box 16:9 project, which leaves
a strip of black at bottom and top. The size of the letter box is 768 by
432, while the bottom left of the letter box is offset from the origin
by 0,77. The ASCII art below shows the details…..

 (768,576)

 | |
 | BLACK |
 |.....................................| (768, 504)
 | |
 | |
 | LETTER BOXED IMAGERY |
 | |
 | |
(0,72) |.....................................|
 | |
 | BLACK |
 | |

 (0,0)

So in this example…

	the
extent
of the project is the full size of the output image, which is
768x576,

	the
size
of the project is the size of the letter box section, which is
768x432,

	the
offset
of the project is the bottom left corner of the project window, which
is 0,72.

The properties on an effect instance handle allow you to fetch these
values…

	kOfxImageEffectPropProjectExtent
for the extent of the current project,

	kOfxImageEffectPropProjectSize
for the size of the current project,

	kOfxImageEffectPropProjectOffset
for the offset of the current project.

So to map from normalised coordinates to canonical coordinates, you use
the project size and offset…

	for values that represent a size simply multiply the normalised
coordinate by the project size

	for values that represent an absolute position, multiply the
normalised coordinate by the project size then add the project origin

To flag to the host that a parameter as normalised, we use the
kOfxParamPropDoubleType property.
Parameters that are so flagged have values set and retrieved by an
effect in normalized coordinates. However a host can choose to represent
them to the user in whatever space it chooses. The values that this
property can take are…

	
	
kOfxParamDoubleTypeX

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the X dimension. See kOfxParamPropDoubleType.

A size in the X dimension dimension (1D only), new for 1.2

	
	
kOfxParamDoubleTypeXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the X dimension. See kOfxParamPropDoubleType.

A position in the X dimension (1D only), new for 1.2

	
	
kOfxParamDoubleTypeY

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

A size in the Y dimension dimension (1D only), new for 1.2

	
	
kOfxParamDoubleTypeYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

A position in the X dimension (1D only), new for 1.2

	
	
kOfxParamDoubleTypeXY

	value for the kOfxParamPropDoubleType property, indicating a 2D size in canonical coords. See kOfxParamPropDoubleType.

A size in the X and Y dimension (2D only), new for 1.2

	
	
kOfxParamDoubleTypeXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating a 2D position in canonical coords. See kOfxParamPropDoubleType.

A position in the X and Y dimension (2D only), new for 1.2

	
	
kOfxParamDoubleTypeNormalisedX

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeX V1.4: Removed

Normalised size with respect to the project’s X dimension (1D
only), deprecated for 1.2

	
	
kOfxParamDoubleTypeNormalisedXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXAbsolute V1.4: Removed

Normalised absolute position on the X axis (1D only), deprecated
for 1.2

	
	
kOfxParamDoubleTypeNormalisedY

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeY V1.4: Removed

Normalised size wrt to the project’s Y dimension (1D only),
deprecated for 1.2

	
	
kOfxParamDoubleTypeNormalisedYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeYAbsolute V1.4: Removed

Normalised absolute position on the Y axis (1D only), deprecated
for 1.2

	
	
kOfxParamDoubleTypeNormalisedXY

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for 2D params. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXY V1.4: Removed

Normalised to the project’s X and Y size (2D only), deprecated for
1.2

	
	
kOfxParamDoubleTypeNormalisedXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for a 2D param that can be interpretted as an absolute spatial position. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of kOfxParamDoubleTypeXYAbsolute V1.4: Removed

Normalised to the projects X and Y size, and is an absolute
position on the image plane, deprecated for 1.2.

For example, we have an effect that draws a circle. It has two
parameters a 1D double radius parameter and a 2D double position
parameter. It would flag the radius to be
kOfxParamDoubleTypeNormalisedX, fetch the value and scale that by
the project size before we render the circle. The host should present
such normalised parameters to the user in a sensible range. So for a
PAL project, it would be from 0..768, where the plug-in sees 0..1.

The position can be handled by the
kOfxParamDoubleTypeNormalisedXYAbsolute case. In which case the
plugin must scale the parameter’s value by the project size and add in
the project offset. This will allow the positional parameter to be moved
between projects transparently.

Temporal Coordinates

Within OFX Image Effects, there is only one temporal coordinate system,
this is in output frames referenced to the start of the effect (so the
first affected frame = 0). All times within the API are in that
coordinate system.

All clip instances have a property that indicates the frames for which
they can generate image data. This is
kOfxImageEffectPropFrameRange,
a 2D double property, with the first dimension being the first, and the
second being last the time at which the clip will generate data.

Consider the example below, it is showing an effect of 10 frames
duration applied to a clip lasting 20 frames. The first frame of the
effect is in fact the 5th frame of the clip. Both the input and output
have the same frame rate.

Effect 0 1 2 3 4 5 6 7 8 9
Source 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In this example, if the effect asks for the source image at time ‘4’,
the host will actually return the 9th image of that clip. When queried
the output and source clip instances would report the following…

 range[0] range[1] FPS
Output 0 9 25
Source -4 15 25

Consider the slightly more complex example below, where the output has a
frame rate twice the input’s

Effect 0 1 2 3 4 5 6 7 8 9
Source 0 1 2 3 4 5 6 7

When queried the output and source clips would report the following.

 range[0] range[1] FPS
Output 0 9 50
Source -2 12 25

Using simple arithmetic, any effect that needs to access a specific
frame of an input, can do so with the formula…

f' = (f - range[0]) * srcFPS/outFPS

Images and Clips

What Is An Image?

Image Effects process images (funny that), this chapter describes
images and clips of images, how they behave and how to deal with them.

Firstly some definitions…

	an image is a rectangular array of addressable pixels,

	a clip is a contiguous sequence of images that vary over time.

Images and clips contain pixels, these pixels can currently be of the
following types…

	a colour pixel with red, green, blue, alpha components

	a colour pixel with red, green and blue components

	single component ‘alpha’ images

The components of the pixels can be of the following types…

	8 bit unsigned byte, with the nominal black and white points at 0 and
255 respectively,

	16 bit unsigned short, with the nominal black and white points at 0
and 65535 respectively,

	32 bit float, with the nominal black and white points at 0.0f and
1.0f respectively, component values are not clipped to 0.0f and 1.0f.

Components are packed per pixel in the following manner…

	RGBA pixels as R, G, B, A

	RGB pixels as R, G, B

There are several structs for pixel types in ofxCore.h <https://github.com/ofxa/openfx/blob/master/include/ofxCore.h> that can be used
for raw pixels in OFX.

Images are always left to right, bottom to top, with the pixel data
pointer being at the bottom left of the image. The pixels in a scan line
are contiguously packed.

Scanlines need not be contiguously packed. The number of bytes
between between a pixel in the same column, but separated by a scan line
is known as the rowbytes of an image. Rowbytes can be negative,
allowing for compositing systems with a native top to bottom scanline
order to trivially support bottom to top images.

Clips and images also have a pixel aspect ratio, this is how much an
actual addressable pixel must be stretched by in X to be square. For
example PAL SD images have a pixel aspect ratio of 1.06666.

Images are rectangular, whose integral bounds are in Pixel coordinates,
with the image being X1 <= X < X2 and Y1 <= Y < Y2, ie: exclusive on the
top and right. The bounds represent the amount of data present in the
image, which may be larger, smaller or equal to the Region of Definition
of the image, depending on the architecture supported by the plugin. The
kOfxImagePropBounds property on an image
holds this information.

An image also contains it’s RoD in image coordinates, in the
kOfxImagePropRegionOfDefinition
property. The RoD is the maximum area that an image may have pixels in,
t he bounds are the actual addressable pixels present in an image. This
allows for tiled rendering an so on.

Clips have a frame rate, which is the number of frames per second they
are to be displayed at. Some clips may be continuously samplable (for
example, if they are connected to animating geometry that can be
rendered at arbitrary times), if this is so, the frame rate for these
clips is set to 0.

Images may be composed of full frames, two fields or a single field,
depending on its source and how the effect requests the image be
processed. Clips are either full frame sequences or fielded sequences.

Images and clips also have a premultiplication state, this represents
how the alpha component and the RGB/YUV components may have interacted.

Defining Clips

During an the effect’s describe in context action an effect must
define the clips mandated for that context, it can also define extra
clips that it may need for that context. It does this using the
:cpp:func`OfxImageEffectSuiteV1::clipDefine`
function, the property handle returned by this function is purely for
definition purposes only. It has not persistence outside the describe in
context action and is distinct to the clip property handles used by
instances. The name parameter is how you can later access that clip in
a plugin instance via the
:cpp:func`OfxImageEffectSuiteV1::clipGetHandle` function.

During the describe in context action, the plugin sets properties on a
clip to control its use. The properties that can be set during a
describe in context call are…

	kOfxPropLabel
to give a user readable name to the clip (the host need not use this,
for example in a transition it is redundant),

	kOfxImageEffectPropSupportedComponents
to specify which components it is willing to accept on that clip,

	kOfxImageClipPropOptional
to specify if the clip is optional,

	
	kOfxImageClipPropFieldExtraction
	specifies how to extract fielded images from a clip, see this section
for more details on field and field rendering

	kOfxImageEffectPropTemporalClipAccess
whether the effect wants to access images from the clip at times
other that the frame being renderred.

Plugins must indicate which pixel depths they can process by setting
the
kOfxImageEffectPropSupportedPixelDepths
on the plugin handle during the describe action.

Pixel Aspect Ratios, frame rates, fielding, components and pixel depths
are constant for the duration of a clip, they cannot changed from frame
to frame.

Note

	it is an error not to set the kOfxImageEffectPropSupportedPixelDepths
plugin property during its describe action

	it is an error not to define a mandated input clip during the
describe in context action

	it is an error not to set the kOfxImageEffectPropSupportedComponents
on an input clip during describe in context

Getting Images From Clips

Clips in instances are retrieved via the
:cpp:func`OfxImageEffectSuiteV1::clipGetHandle`
function. This returns a property handle for the clip in a specific
instance. This handle is valid for the duration of the instance.

Images are fetched from a clip via the
OfxImageEffectSuiteV1::clipGetImage()
function. This takes a time and an optional region to extract an image
at from a given clip. This returns, in a property handle, an image
fetched from the clip at a specific time. The handle contains all the
information relevant to dealing with that image.

Once fetched, an image must be released via the
OfxImageEffectSuiteV1::clipReleaseImage()
function. All images must be released within the action they were
fetched in. You cannot retain an image after an action has returned.

Images may be fetched from an attached clip in the following
situations…

	in the kOfxImageEffectActionRender action

	in the kOfxActionInstanceChanged

and kOfxActionEndInstanceChanged actions with a kOfxPropChangeReason of kOfxChangeUserEdited

A host may not be able to support random temporal access, it flags its
ability to do so via the
kOfxImageEffectPropTemporalClipAccess
property. A plugin that wishes to perform random temporal access must
set a property of that name on the plugin handle and the clip it wishes
to perform random access from.

Note

	it is an error for a plugin to attempt random temporal image access if the host does not support it

	it is an error for a plugin to attempt random temporal image access

if it has not flagged that it wishes to do so and the clip it wishes
to do so from.

Premultiplication And Alpha

All images and clips have a premultiplication state. This is used to
indicate how the image should interpret RGB (or YUV) pixels, with
respect to alpha. The premultiplication state can be…

	
kOfxImageOpaque

	Used to flag the alpha of an image as opaque

The image is opaque and so has no premultiplication state, but the
alpha component in all pixels is set to the white point

	
kOfxImagePreMultiplied

	Used to flag an image as premultiplied

The image is premultiplied by it’s alpha

	
kOfxImageUnPreMultiplied

	Used to flag an image as unpremultiplied

The image is unpremultiplied.

This document won’t go into the details of premultiplication, but will
simply state that OFX takes notice of it and flags images and clips
accordingly.

The premultiplication state of a clip is constant over the entire
duration of that clip.

Clips and Pixel Aspect Ratios

All clips and images have a pixel aspect ratio, this is how much a
‘real’ pixel must be stretched by in X to be square. For example PAL D1
images have a pixel aspect ratio of 1.06666.

The property
kOfxImageEffectPropSupportsMultipleClipPARs
is used to control how a plugin deals with pixel aspect ratios. This is
both a host and plugin property. For a host it can be set to…

	0 - the host only supports a single pixel aspect ratio for all clips,
input or output, to an effect,

	1 - the host can support differing pixel aspect ratios for inputs and
outputs

For a plugin it can be set to…

	0 - the plugin expects all pixel aspect ratios to be the same on all
clips, input or output

	1 - the plugin will accept clips of differing pixel aspect ratio.

If a plugin does not accept clips of differing PARs, then the host must
resample all images fed to that effect to agree with the output’s PAR.

If a plugin does accept clips of differing PARs, it will need to specify
the output clip’s PAR in the
kOfxImageEffectActionGetClipPreferences
action.

Allocating Your Own Images

Under OFX, the images you fetch from the host have already had their
memory allocated. If a plug-in needs to define its owns temporary images
buffers during processing, or to cache images between actions, then the
plug-in should use the image memory allocation routines declared in
OfxImageEffectSuiteV1. The reason for this is that many host have
special purpose memory pools they manage to optimise memory usage as
images can chew up memory very rapidly (eg: a 2K RGBA floating point
film plate is 48 MBytes).

For general purpose (as in less than a megabyte) memory allocation, you
should use the memory suite in ofxMemory.h

OFX provides four functions to deal with image memory. These are,

	OfxImageEffectSuiteV1::imageMemoryAlloc()

	OfxImageEffectSuiteV1::imageMemoryFree()

	OfxImageEffectSuiteV1::imageMemoryLock()

	OfxImageEffectSuiteV1::imageMemoryUnlock()

A host needs to be able defragment its image memory pool, potentially
moving the contents of the memory you have allocated to another address,
even saving it to disk under its own virtual memory caching scheme.
Because of this when you request a block of memory, you are actually
returned a handle to the memory, not the memory itself. To use the
memory you must first lock the memory via the imageMemoryLock call,
which will then return a pointer to the locked block of memory.

During an single action, there is generally no need to lock/unlock any
temporary buffers you may have allocated via this mechanism. However
image memory that is cached between actions should always be unlocked
while it is not actually being used. This allows a host to do what it
needs to do to optimise memory usage.

Note that locks and unlocks nest. This implies that there is a lock
count kept on the memory handle, also not that this lock count cannot be
negative. So unlocking a completely unlocked handle has no effect.

An example is below….

// get a memory handle
OfxImageMemoryHandle memHandle;
gEffectSuite->imageMemoryAlloc(0, imageSize, &memHandle);

// lock the handle and get a pointer
void *memPtr;
gEffectSuite->imageMemoryLock(memHandle, &memPtr);

... // do stuff with our pointer

// now unlock it
gEffectSuite->imageMemoryUnlock(memHandle);

// lock it again, note that this may give a completely different address to the last lock
gEffectSuite->imageMemoryLock(memHandle, &memPtr);

... // do more stuff

// unlock it again
gEffectSuite->imageMemoryUnlock(memHandle);

// delete it all
gEffectSuite->imageMemoryFree(memHandle);

Effect Parameters

Introduction

Nearly all plug-ins have some sort of parameters that control their
behaviour, the radius of a circle drawer, the frequencies to filter out
of an audio signal, the colour of a lens flare and so on.

Seeing as hosts already provide for the general management of their own
native parameters (eg: persistence, interface, animation etc…), it
would make no sense to force plug-ins to do this all themselves.

The OFX Parameters Suite is the means by which parameters are defined
and used by the plug-in but maintained by the host. It is defined in the
ofxParam.h header file.

Note that the entire state of the plugin is encoded in the value of its
parameter set. If you need to persist some sort of private data, you
must do so by setting param values in the effects. The kOfxActionSyncPrivateData
is an action that tells you
when to flush any values that need persisting out to the effects param
set. You can reconstruct your private data during the kOfxActionCreateInstance.

Defining Parameters

A plugin needs to define it’s parameters during a describe action. It
does this with the
OfxParameterSuiteV1::paramDefine()
function, which returns a handle to a parameter description.
Parameters cannot currently be defined outside of the plugins describe
actions.

Parameters are uniquely labelled within a plugin with an ASCII null
terminated C-string. This name is not necassarily meant to be end-user
readable, various properties are provided to set the user visible labels
on the param.

All parameters hold properties, though the exact set of properties on a
parameter is dependent on the type of the parameter.

A parameter’s handle comes in two slightly different flavours. The
handle returned inside a plugin’s describe action is not an actual
instance of a parameter, it is there for the purpose description only.
You can only set properties on that handle (eg: label, min/max value,
default …), you cannot get values from it or set values in it. The
parameters defined in the describe action will common to all instances
of a plugin.

The handle returned by
OfxParameterSuiteV1::paramGetHandle()
outside of a describe action will be a working instance of a parameter,
you can still set (some) properties of the parameter, and all the
get/set value functions are now usable.

Parameter Types

There are seventeen types of parameter. These are

	
	
kOfxParamTypeInteger

	String to identify a param as a single valued integer.

	
	
kOfxParamTypeInteger2D

	String to identify a param as a Two dimensional integer point parameter.

	
	
kOfxParamTypeInteger3D

	String to identify a param as a Three dimensional integer parameter.

	
	
kOfxParamTypeDouble

	String to identify a param as a Single valued floating point parameter

	
	
kOfxParamTypeDouble2D

	String to identify a param as a Two dimensional floating point parameter.

	
	
kOfxParamTypeDouble3D

	String to identify a param as a Three dimensional floating point parameter.

	
	
kOfxParamTypeRGB

	String to identify a param as a Red, Green and Blue colour parameter.

	
	
kOfxParamTypeRGBA

	String to identify a param as a Red, Green, Blue and Alpha colour parameter.

	
	
kOfxParamTypeBoolean

	String to identify a param as a Single valued boolean parameter.

	
	
kOfxParamTypeChoice

	String to identify a param as a Single valued, ‘one-of-many’ parameter.

	
	
kOfxParamTypeString

	String to identify a param as a String (UTF8) parameter.

	
	
kOfxParamTypeCustom

	String to identify a param as a Plug-in defined parameter.

	
	
kOfxParamTypePushButton

	String to identify a param as a PushButton parameter.

	
	
kOfxParamTypeGroup

	String to identify a param as a Grouping parameter.

	
	
kOfxParamTypePage

	String to identify a param as a page parameter.

	
	
kOfxParamTypeParametric

	String to identify a param as a single valued integer.

Multidimensional Parameters

Some parameter types are multi dimensional, these are…

	kOfxParamTypeDouble2D

	kOfxParamTypeInteger2D

	kOfxParamTypeDouble3D

	kOfxParamTypeInteger3D

	kOfxParamTypeRGB

	kOfxParamTypeRGBA

	kOfxParamTypeParametric

These parameters are treated in an atomic manner, so that all dimensions
are set/retrieved simultaneously. This applies to keyframes as well.

The non colour parameters have an implicit ‘X’, ‘Y’ and ‘Z’ dimension,
and any interface should display them with such labels.

Integer Parameters

These are typed by kOfxParamTypeInteger, kOfxParamTypeInteger2D
and kOfxParamTypeInteger3D.

Integer parameters are of 1, 2 and 3D varieties and contain integer
values, between INT_MIN and INT_MAX.

Double Parameters

These are typed by kOfxParamTypeDouble, kOfxParamTypeDouble2D
and kOfxParamTypeDouble3D.

Double parameters are of 1, 2 and 3D varieties and contain double
precision floating point values.

Colour Parameters

These are typed by kOfxParamTypeRGB and kOfxParamTypeRGBA.

Colour parameters are 3 or 4 dimensional double precision floating point
parameters. They are displayed using the host’s appropriate interface
for a colour. Values are always normalised in the range [0 .. 1], with 0
being the nominal black point and 1 being the white point.

Boolean Parameters

This is typed by kOfxParamTypeBoolean.

Boolean parameters are integer values that can have only one of two
values, 0 or 1.

Choice Parameters

This is typed by kOfxParamTypeChoice.

Choice parameters are integer values from 0 to N-1, which correspond to
N labeled options.

Choice parameters have their individual options set via the
kOfxParamPropChoiceOption property,
for example

gPropHost->propSetString(myChoiceParam, kOfxParamPropChoiceOption, 0, "1st Choice");
gPropHost->propSetString(myChoiceParam, kOfxParamPropChoiceOption, 1, "2nd Choice");
gPropHost->propSetString(myChoiceParam, kOfxParamPropChoiceOption, 2, "3nd Choice");
...
gPropHost->propSetString(myChoiceParam, kOfxParamPropChoiceOption, n, "nth Choice");

It is an error to have gaps in the choices after the describe action has
returned.

String Parameters

This is typed by kOfxParamTypeString.

String parameters contain null terminated char * UTF8 C strings.
They can be of several different variants, which is controlled by the
kOfxParamPropStringMode property,
these are

	
	
kOfxParamStringIsSingleLine

	Used to set a string parameter to be single line, value to be passed to a kOfxParamPropStringMode property.

	
	
kOfxParamStringIsMultiLine

	Used to set a string parameter to be multiple line, value to be passed to a kOfxParamPropStringMode property.

	
	
kOfxParamStringIsFilePath

	Used to set a string parameter to be a file path, value to be passed to a kOfxParamPropStringMode property.

	
	
kOfxParamStringIsDirectoryPath

	Used to set a string parameter to be a directory path, value to be passed to a kOfxParamPropStringMode property.

	
	
kOfxParamStringIsLabel

	Use to set a string parameter to be a simple label, value to be passed to a kOfxParamPropStringMode property

Group Parameters

This is typed by kOfxParamTypeGroup.

Group parameters allow all parameters to be arranged in a tree
hierarchy. They have no value, they are purely a grouping element.

All parameters have a kOfxParamPropParent
property, which is a string property naming the group parameter which is
its parent.

The empty string “” is used to label the root of the parameter
hierarchy, which is the default parent for all parameters.

Parameters inside a group are ordered by their order of addition to that
group, which implies parameters in the root group are added in order of
definition.

Any host based hierarchical GUI should use this hierarchy to order
parameters (eg: animation sheets).

Page Parameters

This is typed by kOfxParamTypePage.

Page parameters are covered in detail in their own
section.

Custom Parameters

This is typed by kOfxParamTypeCustom.

Custom parameters contain null terminated char * C strings, and may
animate. They are designed to provide plugins with a way of storing data
that is too complicated or impossible to store in a set of ordinary
parameters.

If a custom parameter animates, it must set its
kOfxParamPropCustomInterpCallbackV1
property, which points to a function with the following signature:

	
OfxStatus() OfxCustomParamInterpFuncV1 (OfxParamSetHandle instance, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Function prototype for custom parameter interpolation callback functions.

	instance the plugin instance that this parameter occurs in

	inArgs handle holding the following properties…
	kOfxPropName - the name of the custom parameter to interpolate

	kOfxPropTime - absolute time the interpolation is ocurring at

	kOfxParamPropCustomValue - string property that gives the value of the two keyframes to interpolate, in this case 2D

	kOfxParamPropInterpolationTime - 2D double property that gives the time of the two keyframes we are interpolating

	kOfxParamPropInterpolationAmount - 1D double property indicating how much to interpolate between the two keyframes

	outArgs handle holding the following properties to be set
	kOfxParamPropCustomValue - the value of the interpolated custom parameter, in this case 1D

This function allows custom parameters to animate by performing interpolation between keys.

The plugin needs to parse the two strings encoding keyframes on either side of the time we need a value for. It should then interpolate a new value for it, encode it into a string and set the kOfxParamPropCustomValue property with this on the outArgs handle.

The interp value is a linear interpolation amount, however his may be derived from a cubic (or other) curve.

This function is used to interpolate keyframes in custom params.

Custom parameters have no interface by default. However,

	if they animate, the host’s animation sheet/editor should present a
keyframe/curve representation to allow positioning of keys and
control of interpolation. The ‘normal’ (ie: paged or hierarchical)
interface should not show any gui.

	if the custom param sets its
kOfxParamPropInteractV1
property, this should be used by the host in any normal (ie: paged or
hierarchical) interface for the parameter.

Custom parameters are mandatory, as they are simply ASCII C strings.
However, animation of custom parameters an support for an in editor
interact is optional.

Push Button Parameters

This is typed by kOfxParamTypePushButton.

Push button parameters have no value, they are there so a plugin can
detect if they have been pressed and perform some action. If pressed, a
kOfxActionInstanceChanged action
will be issued on the parameter with a
kOfxPropChangeReason of
kOfxChangeUserEdited.

Animation

By default the following parameter types animate…

	kOfxParamTypeInteger

	kOfxParamTypeInteger2D

	kOfxParamTypeInteger3D

	kOfxParamTypeDouble

	kOfxParamTypeDouble2D

	kOfxParamTypeDouble3D

	kOfxParamTypeRGBA

	kOfxParamTypeRGB

The following types cannot animate…

	kOfxParamTypeGroup

	kOfxParamTypePage

	kOfxParamTypePushButton

The following may animate, depending on the host. Properties exist on
the host to check this. If the host does support animation on them, then
they do not animate by default. They are…

	kOfxParamTypeCustom

	kOfxParamTypeString

	kOfxParamTypeBoolean

	kOfxParamTypeChoice

By default the
OfxParameterSuiteV1::paramGetValue()
will get the ‘current’ value of the parameter. To access values in a
potentially animating parameter, use the
OfxParameterSuiteV1::paramGetValueAtTime() function.

Keys can be manipulated in a parameter using a variety of functions,
these are…

	OfxParameterSuiteV1::paramSetValueAtTime()

	OfxParameterSuiteV1::paramGetNumKeys()

	OfxParameterSuiteV1::paramGetKeyTime()

	OfxParameterSuiteV1::paramGetKeyIndex()

	OfxParameterSuiteV1::paramDeleteKey()

	OfxParameterSuiteV1::paramDeleteAllKeys()

Parameter Interfaces

Parameters will be presented to the user in some form of interface.
Typically on most host systems, this comes in three varieties…

	a paged layout, with parameters spread over multiple controls pages
(eg: the FLAME control pages)

	a hierarchical layout, with parameters presented in a grouped tree
(eg: the After Effects ‘effects’ window)

	an animation sheet, showing animation curves and key frames.
Typically this is hierarchical.

Most systems have an animation sheet and present one of either the paged
or the hierarchical layouts.

Because a hierarchy of controls is explicitly set during plugin
definition, the case of the animation sheet and hierarchial GUIs are
taken care of explicitly.

Paged Parameter Editors

A paged layout of controls is difficult to standardise, as the size of
the page and controls, how the controls are positioned on the page, how
many controls appear on a page etc… depend very much upon the host
implementation. A paged layout is ideally best described in the .XML
resource supplied by the plugin, however a fallback page layout can be
specified in OFX via the kOfxParamTypePage parameter type.

Several host properties are associated with paged layouts, these are…

	kOfxParamHostPropMaxPages
The maximum number of pages you may use, 0 implies an unpaged
layout

	kOfxParamHostPropPageRowColumnCount
The number of rows and columns for parameters in the paged layout.

Each page parameter represents a page of controls. The controls in that
page are set by the plugin using the kOfxParamPropPageChild
multi-dimensional string. For example…

OfxParamHandle page;
gHost->paramDefine(plugin, kOfxParamTypePage, "Main", &page);

propHost->propSetString(page, kOfxParamPropPageChild, 0, "size"); // add the size parameter to the top left of the page
propHost->propSetString(page, kOfxParamPropPageChild, 1, kOfxParamPageSkipRow); // skip a row
propHost->propSetString(page, kOfxParamPropPageChild, 2, "centre"); // add the centre parameter
propHost->propSetString(page, kOfxParamPropPageChild, 3, kOfxParamPageSkipColumn); // skip a column, we are now at the top of the next column
propHost->propSetString(page, kOfxParamPropPageChild, 4, "colour"); // add the colour parameter

The host then places the parameters on that page in the order they were
added, starting at the top left and going down columns, then across rows
as they fill.

Note that there are two pseudo parameters names used to help control
layout:

	
kOfxParamPageSkipRow

	Pseudo parameter name used to skip a row in a page layout.

Passed as a value to the kOfxParamPropPageChild property.

See ParametersInterfacesPagedLayouts for more details.

	
kOfxParamPageSkipColumn

	Pseudo parameter name used to skip a row in a page layout.

Passed as a value to the kOfxParamPropPageChild property.

See ParametersInterfacesPagedLayouts for more details.

These will help control how parameters are added to a page, allowing
vertical or horizontal slots to be skipped.

A host sets the order of pages by using the instance’s
kOfxPluginPropParamPageOrder property.
Note that this property can vary from context to context, so
you can exclude pages in contexts they are not useful in. For example…

OfxStatus describeInContext(OfxImageEffectHandle plugin)
{
...
 // order our pages of controls
 propHost->propSetString(paramSetProp, kOfxPluginPropParamPageOrder, 0, "Main");
 propHost->propSetString(paramSetProp, kOfxPluginPropParamPageOrder, 1, "Sampling");
 propHost->propSetString(paramSetProp, kOfxPluginPropParamPageOrder, 2, "Colour Correction");
 if(isGeneralContext)
 propHost->propSetString(paramSetProp, kOfxPluginPropParamPageOrder, 3, "Dance! Dance! Dance!");
...
}

Note

Parameters can be placed on more than a single page (this is often useful).
Group parameters cannot be added to a page.
Page parameters cannot be added to a page or group.

Instance changed callback

Whenever a parameter’s value changes, the host is expected to issue a call to
the kOfxActionInstanceChanged action with the name of the parameter
that changed and a reason indicating who triggered the change:

	
kOfxChangeUserEdited

	String used as a value to kOfxPropChangeReason to indicate a user has changed something.

	
kOfxChangePluginEdited

	String used as a value to kOfxPropChangeReason to indicate the plug-in itself has changed something.

	
kOfxChangeTime

	String used as a value to kOfxPropChangeReason to a time varying object has changed due to a time change.

Parameter Undo/Redo

Hosts usually retain an undo/redo stack, so users can undo changes they
make to a parameter. Often undos and redos are grouped together into an
undo/redo block, where multiple parameters are dealt with as a single
undo/redo event. Plugins need to be able to deal with this cleanly.

Parameters can be excluded from being undone/redone if they set the
kOfxParamPropCanUndo property to 0.

If the plugin changes parameters values by calling the get and set
value functions, they will ordinarily be put on the undo stack, one
event per parameter that is changed. If the plugin wants to group sets
of parameter changes into a single undo block and label that block, it
should use the
OfxParameterSuiteV1::paramEditBegin()
and
OfxParameterSuiteV1::paramEditEnd()
functions.

An example would be a ‘preset’ choice parameter in a sky simulation
whose job is to set other parameters to values that achieve certain
looks, eg “Dusk”, “Midday”, “Stormy”, “Night” etc… This parameter has
a value change callback which looks for kOfxChangeUserEdited
then sets other parameters, sky colour, cloud density, sun position
etc…. It also resets itself to the first choice, which says “Example
Skys…”.

Rather than have many undo events appear on the undo stack for each
individual parameter change, the effect groups them via the
paramEditBegin/paramEditEnd and gets a single undo event. The ‘preset’
parameter would also not want to be undoable as it such an event is
redundant. Note that as the ‘preset’ has been changed it will be sent
another instance changed action, however it will have a reason of
kOfxChangePluginEdited, which it ignores and so stops an infinite
loop occurring.

XML Resource Specification for Parameters

Parameters can have various properties overridden via a separate XML
based resource file.

Parameter Persistence

All parameters flagged with the
kOfxParamPropPersistant property will
persist when an effect is saved. How the effect is saved is completely
up to the host, it may be in a file, a data base, where ever. We call a
saved set of parameters a setup. A host will need to save the major
version number of the plugin, as well as the plugin’s unique identifier,
in any setup.

When an host loads a set up it should do so in the following manner…

	examines the setup for the major version number.

	find a matching plugin with that major version number, if multiple
minor versions exist, the plugin with the largest minor version
should be used.

	creates an instance of that plugin with its set of parameters.

	sets all those parameters to the defaults specified by the plugin.

	examines the setup for any persistent parameters, then sets the
instance’s parameters to any found in it.

	calls create instance on the plugin.

It is not an error for a parameter to exist in the plugin but not the
setup, and vice versa. This allows a plugin developer to modify
parameter sets between point releases, generally by adding new params.
The developer should be sure that the default values of any new
parameters yield the same behaviour as before they were added, otherwise
it would be a breach of the ‘major version means compatibility’ rule.

Parameter Properties Whose Type Vary

Some properties type depends on the kind of the parameter, eg:
kOfxParamPropDefault is an int for a
integer parameter but a double X 2 for a kOfxParamTypeDouble2D
parameter.

The variant property types are as follows….

	
	kOfxParamTypeInteger
	int X 1

	
	kOfxParamTypeDouble
	double X 1

	
	kOfxParamTypeBoolean
	int X 1

	
	kOfxParamTypeChoice
	int X 1

	
	kOfxParamTypeRGBA
	double X 4 (normalised to 0..1 range)

	
	kOfxParamTypeRGB
	double X 3 (normalised to 0..1 range)

	
	kOfxParamTypeDouble2D
	double X 2

	
	kOfxParamTypeInteger2D
	int X 2

	
	kOfxParamTypeDouble3D
	double X 3

	
	kOfxParamTypeInteger3D
	int X 3

	
	kOfxParamTypeString
	char * X 1

	
	kOfxParamTypeCustom
	char * X 1

	
	kOfxParamTypePushButton
	none

Types of Double Parameters

Double parameters can be used to represent a variety of data, by
flagging what a double parameter is representing, a plug-in allows a
host to represent to the user a more appropriate interface than a raw
numerical value. Double parameters have the
kOfxParamPropDoubleType property,
which gives some meaning to the value. This can be one of…

	
	
kOfxParamDoubleTypePlain

	value for the kOfxParamPropDoubleType property, indicating the parameter has no special interpretation and should be interpretted as a raw numeric value.

	
	
kOfxParamDoubleTypeAngle

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as an angle. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeScale

	value for the kOfxParamPropDoubleType property, indicating the parameter is to be interpreted as a scale factor. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeTime

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as a time. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeAbsoluteTime

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as an absolute time from the start of the effect. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeX

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the X dimension. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the X dimension. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeY

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeXY

	value for the kOfxParamPropDoubleType property, indicating a 2D size in canonical coords. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating a 2D position in canonical coords. See kOfxParamPropDoubleType.

	
	
kOfxParamDoubleTypeNormalisedX

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeX V1.4: Removed

	
	
kOfxParamDoubleTypeNormalisedXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXAbsolute V1.4: Removed

	
	
kOfxParamDoubleTypeNormalisedY

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeY V1.4: Removed

	
	
kOfxParamDoubleTypeNormalisedYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeYAbsolute V1.4: Removed

	
	
kOfxParamDoubleTypeNormalisedXY

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for 2D params. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXY V1.4: Removed

	
	
kOfxParamDoubleTypeNormalisedXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for a 2D param that can be interpretted as an absolute spatial position. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of kOfxParamDoubleTypeXYAbsolute V1.4: Removed

Plain Double Parameters

Double parameters with their
kOfxParamPropDoubleType property set
to kOfxParamDoubleTypePlain are uninterpreted. The values
represented to the user are what is reported back to the effect when
values are retrieved. 1, 2 and 3D parameters can be flagged as
kOfxParamDoubleTypePlain, which is the default.

For example a physical simulation plugin might have a ‘mass’ double
parameter, which is in kilograms, which should be displayed and used as
a raw value.

Angle Double Parameters

Double parameters with their
kOfxParamPropDoubleType property set
to kOfxParamDoubleTypeAngle are interpreted as angles. The host
could use some fancy angle widget in it’s interface, representing
degrees, angles mils whatever. However, the values returned to a plugin
are always in degrees. Applicable to 1, 2 and 3D parameters.

For example a plugin that rotates an image in 3D would declare a 3D
double parameter and flag that as an angle parameter and use the values
as Euler angles for the rotation.

Scale Double Parameters

Double parameters with their
kOfxParamPropDoubleType property set
to kOfxParamDoubleTypeScale are interpreted as scale factors. The
host can represent these as 1..100 percentages, 0..1 scale factors,
fractions or whatever is appropriate for its interface. However, the
plugin sees these as a straight scale factor, in the 0..1 range.
Applicable to 1, 2 and 3D parameters.

For example a plugin that scales the size of an image would declare a
‘image scale’ parameter and use the raw value of that to scale the
image.

Time Double Parameters

Double parameters with their
kOfxParamPropDoubleType property set
to kOfxParamDoubleTypeTime are interpreted as a time. The host can
represent these as frames, seconds, milliseconds, millennia or whatever
it feels is appropriate. However, a visual effect plugin sees such
values in ‘frames’. Applicable only to 1D double parameters. It is an
error to set this on any other type of double parameter.

For example a plugin that does motion blur would have a ‘shutter time’
parameter and flags that as a time parameter. The value returned would
be used as the length of the shutter, in frames.

Absolute Time Double Parameters

Double parameters with their
kOfxParamPropDoubleType property set
to kOfxParamDoubleTypeAbsoluteTime are interpreted as an absolute
time from the beginning of the effect. The host can represent these as
frames, seconds, milliseconds, millennia or whatever it feels is
appropriate. However, a plugin sees such values in ‘frames’ from the
beginning of a clip. Applicable only to 1D double parameters. It is an
error to set this on any other type of double parameter.

For example a plugin that stabalises all the images in a clip to a
specific frame would have a reference frame parameter and declare that
as an absolute time parameter and use its value to fetch a frame to
stablise against.

Spatial Parameters

Parameters that can represent a size or position are essential. To that
end there are several values of the
kOfxParamPropDoubleType that say it
should be interpreted as a size or position, in either one or two
dimensions.

The original OFX API only specified
normalised parameters,
this proved to be somewhat more of a problem than expected. With the 1.2
version of the API,
spatial parameters
were introduced. Ideally these should be used and the normalised
parameter types should be deprecated.

Plugins can check kOfxPropAPIVersion to see if
these new parameter types are supported, in hosts with version 1.2 or
greater they will be.

See the section on coordinate systems to
understand some of the terms being discussed.

Spatial Double Parameters

These parameter types represent a size or position in one or two
dimensions in Canonical Coordinate. The host
and plug-in get and set values in this coordinate system. Scaling to
Pixel Coordinate is the responsibility of the
effect.

The default value of a spatial parameter can be set in either a
normalised coordinate system or the canonical coordinate system. This is
controlled by the
kOfxParamPropDefaultCoordinateSystem
on the parameter descriptor with one of the following value:

	
kOfxParamCoordinatesCanonical

	Define the canonical coordinate system.

	
kOfxParamCoordinatesNormalised

	Define the normalised coordinate system.

Parameters can choose to be spatial in several ways…

	
	kOfxParamDoubleTypeX
	size in the X dimension, in canonical coords (1D double only),

	
	kOfxParamDoubleTypeXAbsolute
	positing in the X axis, in canonical coords (1D double only)

	
	kOfxParamDoubleTypeY
	size in the Y dimension, in canonical coords (1D double only),

	
	kOfxParamDoubleTypeYAbsolute
	positing in the Y axis, in canonical coords (1D double only)

	
	kOfxParamDoubleTypeXY
	2D size, in canonical coords (2D double only),

	
	kOfxParamDoubleTypeXYAbsolute
	2D position, in canonical coords. (2D double only).

Spatial Normalised Double Parameters

Ideally, normalised parameters should be deprecated and no longer used
if spatial parameters are
available.

There are several values of the
kOfxParamPropDoubleType that say it
should be interpreted as a size or position. These are expressed and
proportional to the current project’s size. This will allow the
parameter to scale cleanly with project size changes and to be
represented to the user in an appropriate range.

For example, the sensible X range of a visual effect plugin is the
project’s width, say 768 pixels for a PAL D1 definition video project.
The user sees the parameter as 0..768, the effect sees it as 0..1. So if
the plug-in wanted to set the default value of an effect to be the
centre of the image, it would flag a 2D parameter as normalised and set
the defaults to be 0.5. The user would see this in the centre of the
image, no matter the resolution of the project in question. The plugin
would retrieve the parameter as 0..1 and scale it up to the project size
to size to use.

Parameters can choose to be normalised in several ways…

	
	kOfxParamDoubleTypeNormalisedX
	normalised size wrt to the project’s X dimension (1D only),

	
	kOfxParamDoubleTypeNormalisedXAbsolute
	normalised absolute position on the X axis (1D only)

	
	kOfxParamDoubleTypeNormalisedY
	normalised size wrt to the project’s Y dimension(1D only),

	
	kOfxParamDoubleTypeNormalisedYAbsolute
	normalised absolute position on the Y axis (1D only)

	
	kOfxParamDoubleTypeNormalisedXY
	normalised to the project’s X and Y size (2D only),

	
	kOfxParamDoubleTypeNormalisedXYAbsolute
	normalised to the projects X and Y size, and is an absolute

position on the image plane.

See the section on coordinate systems on how to
scale between normalised, canonical and pixel coordinates.

Double Parameters Defaults, Increments, Mins and Maxs

In all cases double parameters’ defaults, minimums and maximums are
specified in the same space as the parameter, as is the increment in all
cases but normalised parameters.

Normalised parameters specify their increments in canonical
coordinates, rather than in normalised coordinates. So an increment of
‘1’ means 1 pixel, not ‘1 project width’, otherwise sliders would be a
bit wild.

Parametric Parameters

Parametric params are new for 1.2 and are optionally supported by host
applications. They are specified via the kOfxParamTypeParametric
identifier passed into
OfxParameterSuiteV1::paramDefine()

These parameters are somewhat more complex than normal parameters and
require their own set of functions to manage and manipulate them. The
new OfxParametricParameterSuiteV1
is there to do that.

All the defines and suite definitions for parameteric parameters are
defined in the file ofxParametricParam.h [https://github.com/ofxa/openfx/blob/master/include/ofxParametricParam.h]

Parametric parameters are in effect functions a plug-in can ask a host
to arbitrarily evaluate for some value x. A classic use case would be
for constructing look-up tables, a plug-in would ask the host to
evaluate one at multiple values from 0 to 1 and use that to fill an
array.

A host would probably represent this to a user as a cubic curve in a
standard curve editor interface, or possibly through scripting. The user
would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are
returning values based on some arbitrary argument orthogonal to time, so
to evaluate such a param, you need to pass a parametric position and
time.

Often, you would want such a parametric parameter to be
multi-dimensional, for example, a colour look-up table might want three
values, one for red, green and blue. Rather than declare three separate
parametric parameters, so a parametric parameter can be
multi-dimensional.

Due to the nature of the underlying data, you cannot call certain
functions in the ordinary parameter suite when manipulating a parametric
parameter. All functions in the standard parameter suite are valid when
called on a parametric parameter, with the exception of the
following….

	OfxParameterSuiteV1::paramGetValue()

	OfxParameterSuiteV1::paramGetValueAtTime()

	OfxParameterSuiteV1::paramGetDerivative()

	OfxParameterSuiteV1::paramGetIntegral()

	OfxParameterSuiteV1::paramSetValue()

	OfxParameterSuiteV1::paramSetValueAtTime()

Parametric parameters are defined using the standard parameter suite
function
OfxParameterSuiteV1::paramDefine().
The descriptor returned by this call have several non standard
parameter properties available. These are

	
	kOfxParamPropParametricDimension
	the dimension of the parametric parameter,

	
	kOfxParamPropParametricUIColour
	the colour of the curves of a parametric parameter in any user

interface

	
	kOfxParamPropParametricInteractBackground
	a pointer to an interact entry point, which will be used to draw a

background under any user interface,

	
	kOfxParamPropParametricRange
	the min and max value that the parameter will be evaluated over.

Animation is an optional host feature for parametric parameters. Hosts
flag whether they support this feature by setting the host descriptor
property
kOfxParamHostPropSupportsParametricAnimation.

Seeing as we need to pass in the parametric position and dimension to
evaluate, parametric parameters need a new evaluation mechanism. They do
this with the
OfxParametricParameterSuiteV1::parametricParamGetValue() function.
This function returns the value of the parameter at the given time, for
the given dimension, adt the given parametric position,.

Parametric parameters are effectively interfaces to some sort of host
based curve library. To get/set/delete points in the curve that
represents a parameter, the new suite has several functions available to
manipulate control points of the underlying curve.

To set the default value of a parametric parameter to anything but the
identity, you use the control point setting functions in the new suite
to set up a curve on the descriptor returned by
OfxParameterSuiteV1::paramDefine().
Any instances later created, will have that curve as a default.

This simple example defines a colour lookup table, defines a default,
and show how to evaluate the curve

// describe our parameter in
static OfxStatus
describeInContext(OfxImageEffectHandle effect, OfxPropertySetHandle inArgs)
{

 // define it
 OfxPropertySetHandle props;
 gParamHost->paramDefine(paramSet, kOfxParamTypeParametric, "lookupTable", & props);

 // set standard names and labeles
 gPropHost->propSetString(props, kOfxParamPropHint, 0, "Colour lookup table");
 gPropHost->propSetString(props, kOfxParamPropScriptName, 0, "lookupTable");
 gPropHost->propSetString(props, kOfxPropLabel, 0, "Lookup Table");

 // define it as three dimensional
 gPropHost->propSetInt(props, kOfxParamPropParametricDimension, 0, 3);

 // label our dimensions are r/g/b
 gPropHost->propSetString(props, kOfxParamPropDimensionLabel, 0, "red");
 gPropHost->propSetString(props, kOfxParamPropDimensionLabel, 1, "green");
 gPropHost->propSetString(props, kOfxParamPropDimensionLabel, 2, "blue");

 // set the UI colour for each dimension
 for(int component = 0; component < 3; ++component) {
 gPropHost->propSetDouble(props, kOfxParamPropParametricUIColour, component * 3 + 0, component % 3 == 0 ? 1 : 0);
 gPropHost->propSetDouble(props, kOfxParamPropParametricUIColour, component * 3 + 1, component % 3 == 1 ? 1 : 0);
 gPropHost->propSetDouble(props, kOfxParamPropParametricUIColour, component * 3 + 2, component % 3 == 2 ? 1 : 0);
 }

 // set the min/max parametric range to 0..1
 gPropHost->propSetDouble(props, kOfxParamPropParametricRange, 0, 0.0);
 gPropHost->propSetDouble(props, kOfxParamPropParametricRange, 1, 1.0);

 // set a default curve, this example sets an invert
 OfxParamHandle descriptor;
 gParamHost->paramGetHandle(paramSet, "lookupTable", &descriptor, NULL);
 for(int component = 0; component < 3; ++component) {
 // add a control point at 0, value is 1
 gParametricParamHost->parametricParamAddControlPoint(descriptor,
 component, // curve to set
 0.0, // time, ignored in this case, as we are not adding a ket
 0.0, // parametric position, zero
 1.0, // value to be, 1
 false); // don't add a key
 // add a control point at 1, value is 0
 gParametricParamHost->parametricParamAddControlPoint(descriptor, component, 0.0, 1.0, 0.0, false);
 }

 ...
}

void render8Bits(double currentFrame, otherStuff...)
{
 ...

 // make three luts from our curves
 unsigned char lut[3][256];

 OfxParamHandle param;
 gParamHost->paramGetHandle(paramSet, "lookupTable", ¶m, NULL);
 for(int component = 0; component < 3; ++component) {
 for(int position = 0; position < 256; ++position) {
 // position to evaluate the param at
 float parametricPos = float(position)/255.0f;

 // evaluate the parametric param
 float value;
 gParametricParamHost->parametricParamGetValue(param, component, currentFrame, parametricPos, &value);
 value = value * 255;
 value = clamp(value, 0, 255);

 // set that in the lut
 lut[dimension][position] = (unsigned char)value;
 }
 }
 ...
}

Setting Parameters

Plugins are free to set parameters in limited set of circumstances,
typically relating to user interaction. You can only set parameters in
the following actions passed to the plug-in’s main entry
function…

	kOfxActionCreateInstance

	kOfxActionBeginInstanceChanged

	kOfxActionInstanceChanged

	kOfxActionEndInstanceChanged

	kOfxActionSyncPrivateData

Plugins can also set parameter values during the following actions
passed to any of its interacts main entry function:

	kOfxInteractActionPenDown

	kOfxInteractActionPenMotion

	kOfxInteractActionPenUp

	kOfxInteractActionKeyDown

	kOfxInteractActionKeyRepeat

	kOfxInteractActionKeyUp

	kOfxInteractActionLoseFocus

Rendering

The kOfxImageEffectActionRender
action is passed to plugins, when the host requires them to render an
output frame.

All calls to the
kOfxImageEffectActionRender are
bracketed by a pair of
kOfxImageEffectActionBeginSequenceRender
and
kOfxImageEffectActionEndSequenceRender
actions. This is to allow plugins to prepare themselves for rendering
long sequences by setting up any tables etc.. it may need.

The
kOfxImageEffectActionBeginSequenceRender
will indicate the frame range that is to be renderred, and whether this
is purely a single frame render due to interactive feedback from a user
in a GUI.

The render action is used in conjunction with the optional

Identity Effects

If an effect does nothing to its input clips (for example a blur with
blur size set to ‘0’) it can indicate that it is an identity function
via the
kOfxImageEffectActionIsIdentity
action. The plugin indicates which input the host should use for the
region in question. This allows a host to short circuit the processing
of an effect.

Rendering and The Get Region Actions

Many hosts attempt to minimise the areas that they render by using
regions of interest and regions of definition, while some of the simpler
hosts do not attempt to do so. In general the order of actions, per
frame rendered, is something along the lines of….

	ask the effect for it’s region of definition,

	clip the render window against that

	ask the effect for the regions of interest of each of it’s inputs
against the clipped render window,

	clip those regions of interest against the region of definition of
each of those inputs,

	render and cache each of those inputs,

	render the effect against it’s clipped render window.

A host can ask an effect to render an arbitrary window of pixels,
generally these should be clipped to an effect’s region of definition,
however, depending on the host, they may not be. The actual region to
render is indicated by the
kOfxImageEffectPropRenderWindow
render action argument. If an effect is asked to render outside of its
region of definition, it should fill those pixels in with black
transparent pixels.

Note thate
OfxImageEffectSuiteV1::clipGetImage()
function takes an optional region parameter. This is a region, in
Canonical coordinates, that the effect would like on that input clip. If
not used in a render action, then the image returned should be based on
the previous get region of interest action. If used, then the image
returned will be based on this (usually be clipped to the input’s region
of definition). Generally a plugin should not use the region parameter
in the render action, but should leave it to the ‘default’ region.

Multi-threaded Rendering

Multiple render actions may be passed to an effect at the same time. A
plug-in states it’s level of render thread safety by setting the
kOfxImageEffectPluginRenderThreadSafety
string property. This can be set to one of three states….

	
kOfxImageEffectRenderUnsafe

	String used to label render threads as un thread safe, see, kOfxImageEffectPluginRenderThreadSafety.

Indicating that only a single ‘render’ action can be made at any time among all instances

	
kOfxImageEffectRenderInstanceSafe

	String used to label render threads as instance thread safe, kOfxImageEffectPluginRenderThreadSafety.

Indicating that any instance can have a single ‘render’ action at any one time

	
kOfxImageEffectRenderFullySafe

	String used to label render threads as fully thread safe, kOfxImageEffectPluginRenderThreadSafety.

Indicating that any instance of a plugin can have multiple renders running simultaneously

Rendering in a Symmetric Multi Processing Environment

When rendering on computers that have more that once CPU (or this
new-fangled hyperthreading), hosts and effects will want to take
advantage of all that extra CPU goodness to speed up rendering. This
means multi-threading of the render function in some way.

If the plugin has set
kOfxImageEffectPluginRenderThreadSafety
to kOfxImageEffectRenderFullySafe, the host may choose to render a
single frame across multiple CPUs by having each CPU render a different
window. However, the plugin may wish to remain in charge of
multithreading a single frame. The plugin set property
kOfxImageEffectPluginPropHostFrameThreading
informs the host as to whether the host should perform SMP on the
effect. It can be set to either…

	1, in which case the host will attempt to multithread an effect
instance by calling it’s render function called simultaneously, each
call will be with a different renderWindow, but be at the same frame

	0, in which case the host only ever calls the render function once
per frame. If the effect wants to multithread it must use the
OfxMultiThreadSuite API.

A host may have a render farm of computers. Depending exactly how the
host works with it’s render farm, it may have multiple copies on an
instance spread over the farm rendering separate frame ranges, 1-100 on
station A, 101 to 200 on station B and so on…

Rendering Sequential Effects

Some plugins need the output of the previous frame to render the next,
typically they cache some information about the last render and use that
somehow on the next frame. Some temporally averaging degraining
algorithms work that way. Such effects cannot render correctly unless
they are strictly rendered in order, from first to last frame, on a
single instance.

Other plugins are able to render correctly when called in an arbitrary
frame order, but render much more efficiently if rendered in order. For
example a particle system which maintains the state of the particle
system in an instance would simply increment the simulation by a frame
if rendering in-order, but would need to restart the particle system
from scratch if the frame jumped backwards.

Most plug-ins do not have any sequential dependence. For example, a
simple gain operation has no dependence on the previous frame.

Similarly, host applications, due to their architectures, may or may not
be able to guarantee that a plugin can be rendered strictly in-order.
Node based applications typically have much more difficulty in
guaranteeing such behaviour.

To indicate whether a plugin needs to be rendered in a strictly
sequential order, and to indicate whether a host supports such behaviour
we have a property,
kOfxImageEffectInstancePropSequentialRender.
For plug-ins this can be one of three values…

	0, in which case the host can render an instance over arbitrary frame
ranges on an arbitrary number of computers without any problem
(default),

	1, in which case the host must render an instance on a single
computer over it’s entire frame range, from first to last.

	2, in which case the effect is more efficiently rendered in frame
order, but can compute the correct result regardless of render
order.

For hosts, this property takes three values…

	0, which indicates thet the host can never guarantee sequential
rendering,

	1, which indicates thet the host can guarantee sequential rendering
for plugins that request it,

	2, which indicates thet the host can sometimes perform sequential
rendering.

When rendering, a host will set the in args property on
kOfxImageEffectPropSequentialRenderStatus
to indicate whether the host is currently supporting sequential renders.
This will be passed to the following actions,

	the begin sequence render action

	the sequence render action

	the end sequence render action

Hosts may still render sequential effects with random frame access in
interactive sessions, for example when the user scrubs the current frame
on the timeline and the host asks an effect to render a preview frame.
In such cases, the plugin can detect that the instance is being
interactively manipulated via the
kOfxImageEffectPropInteractiveRenderStatus
property and hack an approximation together for UI purposes. If
eventually rendering the sequence, the host must ignore all frames
rendered out of order and not cache them for use in the final result.

A host may set the in args property
kOfxImageEffectPropRenderQualityDraft
in :c:macro:kOfxImageEffectActionRender` to ask
for a render in Draft/Preview mode. This is useful for applications that
must support fast scrubbing. These allow a plug-in to take short-cuts
for improved performance when the situation allows and it makes sense,
for example to generate thumbnails with effects applied. For example
switch to a cheaper interpolation type or rendering mode. A plugin
should expect frames rendered in this manner that will not be stuck in
host cache unless the cache is only used in the same draft situations.

OFX : Fields and Field Rendering

Fields are evil, but until the world decides to adopt sensible video
standard and casts the current ones into the same pit as 2 inch video
tape, we are stuck with them.

Before we start, some nomenclature. The Y-Axis is considerred to be up,
so in a fielded image,

	even scan lines 0,2,4,6,… are collectively referred to as the lower
field,

	odd scan lines 1,3,5,7… are collective referred to as the upper
field.

We don’t call them odd and even, so as to avoid confusion with video
standard, which have scanline 0 at the top, and so have the opposite
sense of our ‘odd’ and ‘even’.

Clips and images from those clips are flagged as to whether they are
fielded or not, and if so what is the spatial/temporal ordering of the
fields in that image. The
kOfxImageClipPropFieldOrder clip
and image instance property can be…

	
kOfxImageFieldNone

	String used to label imagery as having no fields

The material is unfielded

	
kOfxImageFieldLower

	String used to label the lower field (scan lines 0,2,4…) of fielded imagery

The material is fielded, with scan line 0,2,4…. occurring first in a frame

	
kOfxImageFieldUpper

	String used to label the upper field (scan lines 1,3,5…) of fielded imagery

The material is fielded, with scan line 1,3,5…. occurring first in a frame

Images extracted from a clip flag what their fieldedness is with the
property kOfxImagePropField, this can
be….

	
kOfxImageFieldNone

	String used to label imagery as having no fields

The image is an unfielded frame

	
kOfxImageFieldBoth

	String used to label both fields of fielded imagery, indicating interlaced footage

The image is fielded and contains both interlaced fields

	
kOfxImageFieldLower

	String used to label the lower field (scan lines 0,2,4…) of fielded imagery

The image is fielded and contains a single field, being the lower field (lines 0,2,4…)

	
kOfxImageFieldUpper

	String used to label the upper field (scan lines 1,3,5…) of fielded imagery

The image is fielded and contains a single field, being the upper field (lines 1,3,5…)

The plugin specifies how it deals with fielded imagery by setting the
kOfxImageEffectPluginPropFieldRenderTwiceAlways
property. This can be,

	0 - the plugin is to have it’s render function called twice only if
there is animation in any of it’s parameters

	1 - the plugin is to have it’s render function called twice always
(default)

The reason for this is an optimisation. Imagine a text generator with no
animation being asked to render into a fielded output clip, it can treat
an interlaced fielded image as an unfielded frame. So the host can get
the effect to render both fields in one hit and save on the overhead
required to do the rendering in two passes.

If called twice per frame, the time passed to the render action will be
frame and frame+0.5. So 0.0 0.5 1.0 1.5 etc…

When rendering unfielded footage, the host will only ever call the
effect’s render action once per frame, with the time being at the
integers, 0.0, 1.0, 2.0 and so on.

The render action’s argument property
kOfxImageEffectPropFieldToRender
tells the effect which field it should render, this can be one of…

	kOfxImageFieldNone
- there are no fields to deal with, the image is full frame

	kOfxImageFieldBoth
- the imagery is fielded and both scan lines should be renderred

	kOfxImageFieldLower
- the lower field is being rendered (lines 0,2,4…)

	kOfxImageFieldUpper
- the upper field is being rendered (lines 1,3,5…)

Note

kOfxImageEffectPropFieldToRender will be set to kOfxImageFieldBoth if
kOfxImageEffectPluginPropFieldRenderTwiceAlways is set to 0 on the plugin

A plugin can specify how it wishes fielded footage to be fetched from a
clip via the clip descriptor property
kOfxImageClipPropFieldExtraction.
This can be one of…

	kOfxImageFieldBoth

Fetch a full frame interlaced image

	kOfxImageFieldSingle

Fetch a single field, making a half height image

	kOfxImageFieldDoubled

	Fetch a single field, but doubling each line and so making a full
	height image (default)

If fetching a single field, the actual field fetched from the source
frame is…

	the first temporal field if the time passed to clipGetImage has a
fractional part of 0.0 <= f < 0.5

	the second temporal field otherwise,

To illustrate this last behaviour, the two examples below show an output
with twice the frame rate of the input and how clipGetImage maps to the
input. The .0 and .5 mean first and second temporal fields.

Behaviour with unfielded footage

output 0 1 2 3
source 0 0 1 1

Behaviour with fielded footage

output 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
source 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5

NOTE

	while some rarely used video standards can have odd number of
scan-lines, under OFX, both fields
always
consist of the same number of lines. Pad with black where needed.

	host developers, for single field extracted images, you don’t need to
do any buffer copies, you just need to set the row bytes property of
the returned image to twice the normal value, and maybe tweak the
start address by a scanline.

Rendering In An Interactive Environment

Any host with an interface will most likely have an interactive thread
and a rendering thread. This allows an effect to be manipulated while
having renders batched off to a background thread. This will mean that
some degree of locking will go on to prevent simultaneous read/writes
occurring, see this section for more on thread safety.

A host may need to abort a backgrounded render, typically in response to
a user changing a parameter value. An effect should occasionally poll
the OfxImageEffectSuiteV1::abort()
function to see if it should give up on rendering.

Rendering on GPU

This file contains an optional suite for performing GPU-accelerated
rendering of OpenFX Image Effect Plug-ins. For details see
\ref ofxGPURender.

It allows hosts and plugins to support OpenGL, CUDA, Metal and other
GPU acceleration methods.

StatusReturnValues

OfxStatus returns indicating that a OpenGL render error has occurred:

	If a plug-in returns kOfxStatGLRenderFailed, the host should retry the render with OpenGL rendering disabled.

	If a plug-in returns kOfxStatGLOutOfMemory, the host may choose to free resources on the GPU and retry the OpenGL render, rather than immediately falling back to CPU rendering.

	
kOfxStatGPUOutOfMemory

	GPU render ran out of memory.

	
kOfxStatGLOutOfMemory

	OpenGL render ran out of memory (same as kOfxStatGPUOutOfMemory)

	
kOfxStatGPURenderFailed

	GPU render failed in a non-memory-related way.

	
kOfxStatGLRenderFailed

	OpenGL render failed in a non-memory-related way (same as kOfxStatGPURenderFailed)

Defines

	
__OFXGPURENDER_H__

	

	
kOfxOpenGLRenderSuite

	The name of the OpenGL render suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxImageEffectPropOpenGLRenderSupported

	Indicates whether a host or plugin can support OpenGL accelerated rendering.

	Type - C string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only) - plugin instance change (read/write)

	Default - “false” for a plugin

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support OpenGL accelerated rendering

	”true” - which means a host or plugin can support OpenGL accelerated rendering, in the case of plug-ins this also means that it is capable of CPU based rendering in the absence of a GPU

	”needed” - only for plug-ins, this means that an effect has to have OpenGL support, without which it cannot work.

V1.4: It is now expected from host reporting v1.4 that the plugin can during instance change switch from true to false and false to true.

	
kOfxOpenGLPropPixelDepth

	Indicates the bit depths supported by a plug-in during OpenGL renders.

This is analogous to kOfxImageEffectPropSupportedPixelDepths. When a plug-in sets this property, the host will try to provide buffers/textures in one of the supported formats. Additionally, the target buffers where the plug-in renders to will be set to one of the supported formats.

Unlike kOfxImageEffectPropSupportedPixelDepths, this property is optional. Shader-based effects might not really care about any format specifics when using OpenGL textures, so they can leave this unset and allow the host the decide the format.

	Type - string X N

	Property Set - plugin descriptor (read only)

	Default - none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

	
kOfxImageEffectPropOpenGLEnabled

	Indicates that an image effect SHOULD use OpenGL acceleration in the current action.

When a plugin and host have established they can both use OpenGL renders then when this property has been set the host expects the plugin to render its result into the buffer it has setup before calling the render. The plugin can then also safely use the ‘OfxImageEffectOpenGLRenderSuite’

	Type - int X 1

	Property Set - inArgs property set of the following actions…
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values
	0 indicates that the effect cannot use the OpenGL suite

	1 indicates that the effect should render into the texture, and may use the OpenGL suite functions.

v1.4: kOfxImageEffectPropOpenGLEnabled should probably be checked in Instance Changed prior to try to read image via clipLoadTexture

Note

Once this property is set, the host and plug-in have agreed to use OpenGL, so the effect SHOULD access all its images through the OpenGL suite.

	
kOfxImageEffectPropOpenGLTextureIndex

	Indicates the texture index of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by ` OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLuint and used as the texture index when
 performing OpenGL texture operations.

 The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropOpenGLTextureTarget

	Indicates the texture target enumerator of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLenum and used as the texture target when performing OpenGL texture operations.

The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxActionOpenGLContextAttached

	Action called when an effect has just been attached to an OpenGL context.

The purpose of this action is to allow a plugin to set up any data it may need to do OpenGL rendering in an instance. For example…
	allocate a lookup table on a GPU,

	create an openCL or CUDA context that is bound to the host’s OpenGL context so it can share buffers.

The plugin will be responsible for deallocating any such shared resource in the kOfxActionOpenGLContextDetached action.

A host cannot call kOfxActionOpenGLContextAttached on the same instance without an intervening kOfxActionOpenGLContextDetached. A host can have a plugin swap OpenGL contexts by issuing a attach/detach for the first context then another attach for the next context.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxActionOpenGLContextDetached

	Action called when an effect is about to be detached from an OpenGL context.

The purpose of this action is to allow a plugin to deallocate any resource allocated in kOfxActionOpenGLContextAttached just before the host decouples a plugin from an OpenGL context. The host must call this with the same OpenGL context active as it called with the corresponding kOfxActionOpenGLContextAttached.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

Typedefs

	
typedef struct OfxImageEffectOpenGLRenderSuiteV1 OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

	
struct OfxImageEffectOpenGLRenderSuiteV1

	
#include <ofxGPURender.h>

OFX suite that provides image to texture conversion for OpenGL processing.

Public Members

	
OfxStatus (*clipLoadTexture)(OfxImageClipHandle clip, OfxTime time, const char *format, const OfxRectD *region, OfxPropertySetHandle *textureHandle)

	loads an image from an OFX clip as a texture into OpenGL

	clip - the clip to load the image from

	time - effect time to load the image from

	format - the requested texture format (As in none,byte,word,half,float, etc..) When set to NULL, the host decides the format based on the plug-in’s kOfxOpenGLPropPixelDepth setting.

	region - region of the image to load (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	textureHandle - a property set containing information about the texture

An image is fetched from a clip at the indicated time for the given region and loaded into an OpenGL texture. When a specific format is requested, the host ensures it gives the requested format. When the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the kOfxImageEffectActionRender action. If the region parameter is set to non-NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set or is NULL, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped to the clip’s Region of Definition. Information about the texture, including the texture index, is returned in the textureHandle argument. The properties on this handle will be…
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

With the exception of the OpenGL specifics, these properties are the same as the properties in an image handle returned by clipGetImage in the image effect suite.

Note

	this is the OpenGL equivalent of clipGetImage from OfxImageEffectSuiteV1

	Pre:

	
	clip was returned by clipGetHandle

	Format property in the texture handle

	Post:

	
	texture handle to be disposed of by clipFreeTexture before the action returns

	when the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the render action.

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - not enough OpenGL memory was available for the effect to load the texture. The plugin should abort the GL render and return kOfxStatErrMemory, after which the host can decide to retry the operation with CPU based processing.

	
OfxStatus (*clipFreeTexture)(OfxPropertySetHandle textureHandle)

	Releases the texture handle previously returned by clipLoadTexture.

For input clips, this also deletes the texture from OpenGL. This should also be called on the output clip; for the Output clip, it just releases the handle but does not delete the texture (since the host will need to read it).

	Pre:

	
	textureHandle was returned by clipGetImage

	Post:

	
	all operations on textureHandle will be invalid, and the OpenGL texture it referred to has been deleted (for source clips)

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - general failure for some reason,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*flushResources)()

	Request the host to minimize its GPU resource load.

When a plugin fails to allocate GPU resources, it can call this function to request the host to flush its GPU resources if it holds any. After the function the plugin can try again to allocate resources which then might succeed if the host actually has released anything.

	Pre:

	

	Post:

	
	No changes to the plugin GL state should have been made.

	Return:

	
	kOfxStatOK - the host has actually released some resources,

	kOfxStatReplyDefault - nothing the host could do..

Interacts

When a host presents a graphical user interface to an image effect, it
may optionally give it the chance to draw its own custom GUI tools and
to be able to interact with pen and keyboard input. In OFX this is done
via the OfxInteract suite, which is found in the file ofxInteract.h [https://github.com/ofxa/openfx/blob/master/include/ofxInteract.h].

OFX interacts by default use openGL to perform all drawing in
interacts, due to its portabilty, robustness and wide implementation.
As of 2022, some systems are moving away from OpenGL support in favor
of more modern graphics drawing APIs. So as of OFX 1.5, effects may
use the OfxDrawSuiteV1 instead of OpenGL if the host supports it.

Each object that can have their own interact a pointer property in it
which should point to a separate main entry point.
This entry point is not the same as the one in the OfxPlugin struct,
as it needs to respond to a different set of actions to the effect.

There are two things in an image effect can have their own interact,
these are…

	as on overlay on the image being currently viewed in any image
viewer, set via the effect descriptor’s
kOfxImageEffectPluginPropOverlayInteractV1
property

	as a replacement for any parameter’s standard GUI object, set this
via the parameter descriptor’s
kOfxParamPropInteractV1
property.

Hosts might not be able to support interacts, to indicate this, two
properties exist on the host descriptor which an effect should examine
at description time so as to determine its own behaviour. These are…

	kOfxImageEffectPropSupportsOverlays

	kOfxParamHostPropSupportsCustomInteract

Interacts are separate objects to the effect they are associated with,
they have their own descriptor and instance handles passed into their
separate main entry point.

An interact instance cannot exist without a plugin instance, an
interact’s instance, once created, is bound to a single instance of a
plugin until the interact instance is destroyed.

All interacts of the same type share openGL display lists, even if they
are in different openGL contexts.

All interacts of the same type will have the same pixel types (this is a
side effect of the last point), this will always be double buffered with
at least RGB components. Alpha and the exact bit depth is left to the
implementation.

So for example, all image effect overlays share the same display lists
and have the same pixel depth, and all custom parameter GUIs share the
same display list and have the same pixel depth, but overlays and custom
parameter GUIs do not necassarily share the same display list/pixel
depths.

An interact instance may be used in more than one view. Consider an
image effect overlay interact in a host that supports multiple viewers
to an effect instance. The same interact instance will be used in all
views, the relevant properties controlling the view being changed before
any action is passed to the interact. In this example, the draw action
would be called once for each view open on the instance, with the
projection, viewport and pixel scale being set appropriately for the
view before each action.

Overlay Interacts

Hosts will generally display images (both input and output) in user
their interfaces. A plugin can put an interact in this display by
setting the effect descriptor
kOfxImageEffectPluginPropOverlayInteractV1
property to point to a main entry.

The viewport for such interacts will depend completely on the host.

The GL_PROJECTION matrix will be set up so that it maps openGL
coordinates to canonical image coordinates.

The GL_MODELVIEW matrix will be the identity matrix.

An overlay’s interact draw action should assume that it is sharing the
openGL context and viewport with other objects that belong to the host.
It should not blank the background and it should never swap buffers,
that is for the host to do.

Parameter Interacts

All parameters, except for custom parameters, have some default
interface that the host creates for them. Be it a numeric slider, colour
swatch etc… Effects can override the default interface (or set an
interface for a custom parameter) by setting the
kOfxParamPropInteractV1. This will
completely replace the parameters default user interface in the ‘paged’
and hierarchical interfaces, but it will not replace the parameter’s
interface in any animation sheet.

Properties affecting custom interacts for parameters are…

	kOfxParamPropInteractSizeAspect

	kOfxParamPropInteractMinimumSize

	kOfxParamPropInteractPreferedSize

The viewport for such interacts will be dependent upon the various
properties above, and possibly a per host override in any XML resource
file.

The GL_PROJECTION matrix will be an orthographic 2D view with -0.5,-0.5
at the bottom left and viewport width-0.5, viewport height-0.5 at the
top right.

The GL_MODELVIEW matrix will be the identity matrix.

The bit depth will be double buffered 24 bit RGB.

A parameter’s interact draw function will have full responsibility for
drawing the interact, including clearing the background and swapping
buffers.

Interact Actions

The following actions are passed to any interact entry point in an image
effect plug-in.

	The Generic Describe Action
called to describe the specific
interact
,

	The Create Instance Action
called just after an instance of the
interact
is created,

	The Generic Destroy Instance Action
called just before of the
interact
is destroyed,

	The Draw Action
called to have the interact draw itself,

	kOfxInteractActionPenMotion
called whenever the interact has the input focus and the pen has
moved, regardless of whether the pen is up or down,

	kOfxInteractActionPenDown
called whenever the interact has the input focus and the pen has
changed state to ‘down’,

	kOfxInteractActionPenUp
called whenever the interact has the input focus and the pen has
changed state to ‘up,

	kOfxInteractActionKeyDown
called whenever the interact has the input focus and a key has gone
down,

	kOfxInteractActionKeyUp
called whenever the interact has the input focus and a key has gone
up,

	kOfxInteractActionKeyRepeat
called whenever the interact has the input focus and a key has gone
down and a repeat key sequence has been sent,

	kOfxInteractActionGainFocus
called whenever the interact gains input focus,

	kOfxInteractActionLoseFocus
called whenever the interact loses input focus,

An interact cannot be described until an effect has been described.

An interact instance must always be associated with an effect instance.
So it gets created after an effect and destroyed before one.

An interact instance should be issued a gain focus action before any key
or pen actions are issued, and a lose focus action when it goes.

Image Effect Clip Preferences

The
kOfxImageEffectActionGetClipPreferences
action is passed to an effect to allow a plugin to specify how it wishes
to deal with its input clips and to set properties in its output clip.
This is especially important when there are multiple inputs which may
have differing properties such as pixel depth and number of channels.

More specifically, there are six properties that can be set during the
clip preferences action, some on the input clip, some on the output
clip, some on both. These are:

	the depth of a clip’s pixels, input or output clip

	the components of a clip’s pixels, input or output clip

	the pixel aspect ratio of a clip, input or output clip

	the frame rate of the output clip

	the fielding of the output clip

	the premultiplication state of the output clip

	whether the output clip varys from frame to frame, even if no
parameters or input images change over time

	whether the output clip can be sampled at sub-frame times and produce
different images

The behaviour specified by OFX means that a host may need to cast images
from their native data format into one suitable for the plugin. It is
better that the host do any of this pixel shuffling because:

	the behaviour is orthogonal for all plugins on that host

	the code is not replicated in all plugins

	the host can optimise the pixel shuffling in one pass with any other
data grooming it may need to do

A plugin gets to assert its clip preferences in several situations.
Firstly whenever a clip is attached to a plugin, secondly whenever one
of the parameters in the plugin property
kOfxImageEffectPropClipPreferencesSlaveParam
has its value changed. The clip preferences action is never called until
all non-optional clips have been attached to the plugin.

Note

	these properties cannot animate over the duration of an effect

	that the ability to set input and output clip preferences is restricted by the context of an effect

	optional input clips do not have any context specific restrictions on plugin set preferences

Frame Varying Effects

Some plugins can generate differing output frames at different times,
even if no parameters animate or no input images change. The
kOfxImageEffectFrameVarying
property set in the clip preferences action is used to flag this.

A counterexample is a solid colour generator. If it has no animating
parameters, the image generated at frame 0 will be the same as the image
generated at any other frame. Intelligent hosts can render a single
frame and cache that for use at all other times.

On the other hand, a plugin that generates random noise at each frame
and seeds its random number generator with the render time will create
different images at different times. The host cannot render a single
frame and cache that for use at subsequent times.

To differentiate between these two cases the
kOfxImageEffectFrameVarying is
used. If set to 1, it indicates that the effect will need to be rendered
at each frame, even if no input images or parameters are varying. If set
to 0, then a single frame can be rendered and used for all times if no
input images or parameters vary. The default value is 0.

Continuously Sampled Effects

Some effects can generate images at non frame-time boundaries, even if
the inputs to the effect are frame based and there is no animation.

For example a fractal cloud generator whose pattern evolves with a speed
parameter can be rendered at arbitrary times, not just on frame
boundaries. Hosts that are interested in sub-frame rendering can
determine that the plugin supports this behaviour by examining the
kOfxImageClipPropContinuousSamples
property set in the clip preferences action. By default this is false.

Note

Implicitly, all retimers effects can be continuously sampled.

Specifying Pixel Depths

Hosts and plugins flag whether whether they can deal with input/output
clips of differing pixel depths via the
kOfxImageEffectPropSupportsMultipleClipDepths property.

If the host sets this to 0, then all effect’s input and output clips
will always have the same component depth, and the plugin may not remap
them.

If the plugin sets this to 0, then the host will transparently map all
of an effect’s input and output clips to a single depth, even if the
actual clips are of differing depths.
In the above two cases, the common component depth chosen will be the
deepest depth of any input clip mapped to a depth the plugin supports
that loses the least precision. E.g.: if a plugin supported 8 bit and
float images, but the deepest clip attached to it was 16 bit, the host
would transparently map all clips to float.

If both the plugin and host set this to 1, then the plugin can, during
the
kOfxImageEffectActionGetClipPreferences,
specify how the host is to map each clip, including the output clip.
Note that this is the only case where a plugin may set the output depth.

The bitdepth must be one of:

	
	
kOfxBitDepthByte

	String used to label unsigned 8 bit integer samples.

	
	
kOfxBitDepthShort

	String used to label unsigned 16 bit integer samples.

	
	
kOfxBitDepthHalf

	String used to label half-float (16 bit floating point) samples.

	Version
	Added in Version 1.4. Was in ofxOpenGLRender.h before.

	
	
kOfxBitDepthFloat

	String used to label signed 32 bit floating point samples.

	
	
kOfxBitDepthNone

	String used to label unset bitdepths.

Specifying Pixel Components

A plugin specifies what components it is willing to accept on a clip via
the
kOfxImageEffectPropSupportedComponents
on the clip’s descriptor during the
kOfxImageEffectActionDescribeInContext
This is one or more of:

	
	
kOfxImageComponentRGBA

	String to label images with RGBA components.

	
	
kOfxImageComponentRGB

	String to label images with RGB components.

	
	
kOfxImageComponentAlpha

	String to label images with only Alpha components.

	
	
kOfxImageComponentNone

	String to label something with unset components.

If an effect has multiple inputs, and each can be a range of component
types, the effect may end up with component types that are incompatible
for its purposes. In this case the effect will want to have the host
remap the components of the inputs and to specify the components in the
output.

For example, a general effect that blends two images will have have two
inputs, each of which may be RGBA or A. In operation, if presented with
RGBA on one and A on the other, it will most likely request that the A
clip be mapped to RGBA by the host and the output be RGBA as well.

In all contexts, except for the general context, mandated input clips
cannot have their component types remapped, nor can the output. Optional
input clips can always have their component types remapped.

In the general context, all input clips may be remapped, as can the
output clip. The output clip has its default components set to be:

	RGBA if any of the inputs is RGBA

	otherwise A if the effect has any inputs

	otherwise RGBA if there are no inputs.

Note

It is a host implementation detail as to how a host actually attaches real
clips to a plugin. However it must map the clip
to RGBA in a manner that is transparent to the plugin. Similarly for any
other component types that the plugin does not support on an input.

Specifying Pixel Aspect Ratios

Hosts and plugins flag whether whether they can deal with input/output
clips of differing pixel aspect ratios via the
kOfxImageEffectPropSupportsMultipleClipPARs property.

If the host sets this to 0, then all effect’s input and output clips
will always have the same pixel aspect ratio, and the plugin may not
remap them.

If the plugin sets this to 0, then the host will transparently map all
of an effect’s input and output clips to a single pixel aspect ratio,
even if the actual clips are of differring PARs.

In the above two cases, the common pixel aspect ratio chosen will be the
smallest on all the inputs, as this preserves image data.

If both the plugin and host set this to 1, then the plugin can, during
kOfxImageEffectActionGetClipPreferences,
specify how the host is to map each clip, including the output clip.

Specifying Fielding

The
kOfxImageEffectPropSetableFielding
host property indicates if a plugin is able to change the fielding of
the output clip from the default.

The default value of the output clip’s fielding is host dependent, but
in general,

	if any of the input clips are fielded, so will the output clip

	the output clip may be fielded irregardless of the input clips (for
example, in a fielded project).

If the host allows a plugin to specify the fielding of the output clip,
then a plugin may do so during the
kOfxImageEffectActionGetClipPreferences
by setting the property
kOfxImageClipPropFieldOrder in
the out args argument of the action. For example a defielding plugin
will want to indicate that the output is frame based rather than
fielded.

Specifying Frame Rates

The
kOfxImageEffectPropSetableFrameRate
host property indicates if a plugin is able to change the frame rate of
the output clip from the default.

The default value of the output clip’s frame rate is host dependent, but
in general, it will be based on the input clips’ frame rates.

If the host allows a plugin to specify the frame rate of the output
clip, then a plugin may do so during the
kOfxImageEffectActionGetClipPreferences.
For example a deinterlace plugin that separates both fields from fielded
footage will want to double the frame rate of the output clip.

If a plugin changes the frame rate, it is effectively changing the
number of frames in the output clip. If our hypothetical deinterlace
plugin doubles the frame rate of the output clip, it will be doubling
the number of frames in that clip. The timing diagram below should help,
showing how our fielded input has been turned into twice the number of
frames on output.

FIELDED SOURCE 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
DEINTERLACED OUTPUT 0 1 2 3 4 5 6 7 8 9

The mapping of the number of output frames is as follows:

nFrames' = nFrames * FPS' / FPS

	nFrames is the default number of frames,

	nFrames' is the new number of output frames,

	FPS is the default frame rate,

	FPS' is the new frame rate specified by a plugin.

Specifying Premultiplication

All clips have a premultiplication state (see this [http://www.teamten.com/lawrence/graphics/premultiplication/]
for a nice explanation).
An effect cannot map the premultiplication state of the
input clips, but it can specify the premultiplication state of the
output clip via
kOfxImageEffectPropPreMultiplication, setting that to
kOfxImagePreMultiplied or kOfxImageUnPreMultiplied.

The output’s default premultiplication state is…

	premultiplied if any of the inputs are premultiplied

	otherwise unpremultiplied if any of the inputs are unpremultiplied

	otherwise opaque

Actions Passed to An Image Effect

Actions passed to an OFX Image Effect’s plug-in main entry point are
from two categories…

	actions that could potentially be issued to any kind of plug in, not
just image effects, known as generic actions, found in
ofxCore.h [https://github.com/ofxa/openfx/blob/master/include/ofxCore.h]

	actions that are only applicable purely to image effects, found in
ofxImageEffect.h [https://github.com/ofxa/openfx/blob/master/include/ofxImageEffect.h]

For generic actions, the handle passed to to main entry point will
depend on the API being implemented, for all generic actions passed to an
OFX Image Effect plug-in, it will nearly always be an
OfxImageEffectHandle.

Because interacts are a special case, they are dealt with in a separate
chapter, this chapter will deal with actions issued to an image effect
plug-ins main entry point.

	
kOfxActionLoad

	This action is the first action passed to a plug-in after the binary containing the plug-in has been loaded. It is there to allow a plug-in to create any global data structures it may need and is also when the plug-in should fetch suites from the host.

The handle, inArgs and outArgs arguments to the mainEntry are redundant and should be set to NULL.

	Pre:

	
	The plugin’s OfxPlugin::setHost function has been called

	Post:

	This action will not be called again while the binary containing the plug-in remains loaded.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well,

	kOfxStatReplyDefault, the action was ignored,

	kOfxStatFailed, the load action failed, no further actions will be passed to the plug-in. Interpret if possible kOfxStatFailed as plug-in indicating it does not want to load Do not create an entry in the host’s UI for plug-in then.

Plug-in also has the option to return 0 for OfxGetNumberOfPlugins or kOfxStatFailed if host supports OfxSetHost in which case kOfxActionLoad will never be called.

	kOfxStatErrFatal, fatal error in the plug-in.

	
kOfxActionUnload

	This action is the last action passed to the plug-in before the binary containing the plug-in is unloaded. It is there to allow a plug-in to destroy any global data structures it may have created.

The handle, inArgs and outArgs arguments to the main entry are redundant and should be set to NULL.

	Pre:

	
	the kOfxActionLoad action has been called

	all instances of a plugin have been destroyed

	Post:

	
	No other actions will be called.

	Returns:

	
	kOfxStatOK, the action was trapped all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal, in which case we the program will be forced to quit

	
kOfxActionDescribe

	The kOfxActionDescribe is the second action passed to a plug-in. It is where a plugin defines how it behaves and the resources it needs to function.

Note that the handle passed in acts as a descriptor for, rather than an instance of the plugin. The handle is global and unique. The plug-in is at liberty to cache the handle away for future reference until the plug-in is unloaded.

Most importantly, the effect must set what image effect contexts it is capable of working in.

This action must be trapped, it is not optional.

	Parameters:

	
	handle – handle to the plug-in descriptor, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionLoad has been called

	Post:

	
	kOfxActionDescribe will not be called again, unless it fails and returns one of the error codes where the host is allowed to attempt the action again

	the handle argument, being the global plug-in description handle, is a valid handle from the end of a sucessful describe action until the end of the kOfxActionUnload action (ie: the plug-in can cache it away without worrying about it changing between actions).

	kOfxImageEffectActionDescribeInContext will be called once for each context that the host and plug-in mutually support. If a plug-in does not report to support any context supported by host, host should not enable the plug-in.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatErrMissingHostFeature, in which the plugin will be unloaded and ignored, plugin may post message

	kOfxStatErrMemory, in which case describe may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxActionCreateInstance

	This action is the first action passed to a plug-in’s instance after its creation. It is there to allow a plugin to create any per-instance data structures it may need.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called

	the instance is fully constructed, with all objects requested in the describe actions (eg, parameters and clips) have been constructed and have had their initial values set. This means that if the values are being loaded from an old setup, that load should have taken place before the create instance action is called.

	Post:

	
	the instance pointer will be valid until the kOfxActionDestroyInstance action is passed to the plug-in with the same instance handle

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrFatal

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should destroy the instanace handle and not attempt to proceed further

	
kOfxActionDestroyInstance

	This action is the last passed to a plug-in’s instance before its destruction. It is there to allow a plugin to destroy any per-instance data structures it may have created.

	kOfxStatOK, the action was trapped and all was well,

	kOfxStatReplyDefault, the action was ignored as the effect had nothing to do,

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the handle,

	the instance has not had any of its members destroyed yet,

	Post:

	
	the instance pointer is no longer valid and any operation on it will be undefined

	Returns:

	To some extent, what is returned is moot, a bit like throwing an exception in a C++ destructor, so the host should continue destruction of the instance regardless.

	
kOfxActionBeginInstanceChanged

	The kOfxActionBeginInstanceChanged and kOfxActionEndInstanceChanged actions are used to bracket all kOfxActionInstanceChanged actions, whether a single change or multiple changes. Some changes to a plugin instance can be grouped logically (eg: a ‘reset all’ button resetting all the instance’s parameters), the begin/end instance changed actions allow a plugin to respond appropriately to a large set of changes. For example, a plugin that maintains a complex internal state can delay any changes to that state until all parameter changes have completed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropChangeReason what triggered the change, which will be one of…

	kOfxChangeUserEdited - the user or host changed the instance somehow and caused a change to something, this includes undo/redos, resets and loading values from files or presets,

	kOfxChangePluginEdited - the plugin itself has changed the value of the instance in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

	outArgs – is redundant and is set to NULL

	Post:

	
	For kOfxActionBeginInstanceChanged , kOfxActionCreateInstance has been called on the instance handle.

	For kOfxActionEndInstanceChanged , kOfxActionBeginInstanceChanged has been called on the instance handle.

	kOfxActionCreateInstance has been called on the instance handle.

	Post:

	
	For kOfxActionBeginInstanceChanged, kOfxActionInstanceChanged will be called at least once on the instance handle.

	kOfxActionEndInstanceChanged will be called on the instance handle.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionEndInstanceChanged

	Action called after the end of a set of kOfxActionEndInstanceChanged actions, used with kOfxActionBeginInstanceChanged to bracket a grouped set of changes, see kOfxActionBeginInstanceChanged.

	
kOfxActionInstanceChanged

	This action signals that something has changed in a plugin’s instance, either by user action, the host or the plugin itself. All change actions are bracketed by a pair of kOfxActionBeginInstanceChanged and kOfxActionEndInstanceChanged actions. The inArgs property set is used to determine what was the thing inside the instance that was changed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropType The type of the thing that changed which will be one of..

	kOfxTypeParameter Indicating a parameter’s value has changed in some way

	kOfxTypeClip A clip to an image effect has changed in some way (for Image Effect Plugins only)

	kOfxPropName the name of the thing that was changed in the instance

	kOfxPropChangeReason what triggered the change, which will be one of…

	kOfxChangeUserEdited - the user or host changed the instance somehow and caused a change to something, this includes undo/redos, resets and loading values from files or presets,

	kOfxChangePluginEdited - the plugin itself has changed the value of the instance in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

	kOfxPropTime

	the effect time at which the chang occured (for Image Effect Plugins only)

	kOfxImageEffectPropRenderScale

	the render scale currently being applied to any image fetched from a clip (for Image Effect Plugins only)

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	kOfxActionBeginInstanceChanged has been called on the instance handle.

	Post:

	
	kOfxActionEndInstanceChanged will be called on the instance handle.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionPurgeCaches

	This action is an action that may be passed to a plug-in instance from time to time in low memory situations. Instances recieving this action should destroy any data structures they may have and release the associated memory, they can later reconstruct this from the effect’s parameter set and associated information.

For Image Effects, it is generally a bad idea to call this after each render, but rather it should be called after kOfxImageEffectActionEndSequenceRender Some effects, typically those flagged with the kOfxImageEffectInstancePropSequentialRender property, may need to cache information from previously rendered frames to function correctly, or have data structures that are expensive to reconstruct at each frame (eg: a particle system). Ideally, such effect should free such structures during the kOfxImageEffectActionEndSequenceRender action.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionSyncPrivateData

	This action is called when a plugin should synchronise any private data structures to its parameter set. This generally occurs when an effect is about to be saved or copied, but it could occur in other situations as well.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Post:

	
	Any private state data can be reconstructed from the parameter set,

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionBeginInstanceEdit

	This is called when an instance is first actively edited by a user, ie: and interface is open and parameter values and input clips can be modified. It is there so that effects can create private user interface structures when necassary. Note that some hosts can have multiple editors open on the same effect instance simulateously.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Post:

	
	kOfxActionEndInstanceEdit will be called when the last editor is closed on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionEndInstanceEdit

	This is called when the last user interface on an instance closed. It is there so that effects can destroy private user interface structures when necassary. Note that some hosts can have multiple editors open on the same effect instance simulateously, this will only be called when the last of those editors are closed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionBeginInstanceEdit has been called on the instance handle,

	Post:

	
	no user interface is open on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxImageEffectActionDescribeInContext

	This action is unique to OFX Image Effect plug-ins. Because a plugin is able to exhibit different behaviour depending on the context of use, each separate context will need to be described individually. It is within this action that image effects describe which parameters and input clips it requires.

This action will be called multiple times, one for each of the contexts the plugin says it is capable of implementing. If a host does not support a certain context, then it need not call kOfxImageEffectActionDescribeInContext for that context.

This action must be trapped, it is not optional.

	Parameters:

	
	handle – handle to the context descriptor, cast to an OfxImageEffectHandle this may or may not be the same as passed to kOfxActionDescribe

	inArgs – has the following property:
	kOfxImageEffectPropContext the context being described

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called on the descriptor handle,

	kOfxActionCreateInstance has not been called

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatErrMissingHostFeature, in which the context will be ignored by the host, the plugin may post a message

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetRegionOfDefinition

	The region of definition for an image effect is the rectangular section of the 2D image plane that it is capable of filling, given the state of its input clips and parameters. This action is used to calculate the RoD for a plugin instance at a given frame. For more details on regions of definition see Image Effect Architectures.

Note that hosts that have constant sized imagery need not call this action, only hosts that allow image sizes to vary need call this.

If the effect did not trap this, it means the host should use the default RoD instead, which depends on the context. This is…

	generator context - defaults to the project window,

	filter and paint contexts - defaults to the RoD of the ‘Source’ input clip at the given time,

	transition context - defaults to the union of the RoDs of the ‘SourceFrom’ and ‘SourceTo’ input clips at the given time,

	general context - defaults to the union of the RoDs of all the non optional input clips and the ‘Source’ input clip (if it exists and it is connected) at the given time, if none exist, then it is the project window

	retimer context - defaults to the union of the RoD of the ‘Source’ input clip at the frame directly preceding the value of the ‘SourceTime’ double parameter and the frame directly after it

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the effect time for which a region of definition is being requested

	kOfxImageEffectPropRenderScale the render scale that should be used in any calculations in this action

	outArgs – has the following property which the plug-in may set
	kOfxImageEffectPropRegionOfDefinition the calculated region of definition, initially set by the host to the default RoD (see below), in Canonical Coordinates.

	Returns:

	
	kOfxStatOK the action was trapped and the RoD was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetRegionsOfInterest

	This action allows a host to ask an effect, given a region I want to render, what region do you need from each of your input clips. In that way, depending on the host architecture, a host can fetch the minimal amount of the image needed as input. Note that there is a region of interest to be set in outArgs for each input clip that exists on the effect. For more details see Image EffectArchitectures”.

The default RoI is simply the value passed in on the kOfxImageEffectPropRegionOfInterest inArgs property set. All the RoIs in the outArgs property set must initialised to this value before the action is called.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the effect time for which a region of definition is being requested

	kOfxImageEffectPropRenderScale the render scale that should be used in any calculations in this action

	kOfxImageEffectPropRegionOfInterest the region to be rendered in the output image, in Canonical Coordinates.

	outArgs – has a set of 4 dimensional double properties, one for each of the input clips to the effect. The properties are each named OfxImageClipPropRoI_ with the clip name post pended, for example OfxImageClipPropRoI_Source. These are initialised to the default RoI.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one RoI was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetFramesNeeded

	This action lets the host ask the effect what frames are needed from each input clip to process a given frame. For example a temporal based degrainer may need several frames around the frame to render to do its work.

This action need only ever be called if the plugin has set the kOfxImageEffectPropTemporalClipAccess property on the plugin descriptor to be true. Otherwise the host assumes that the only frame needed from the inputs is the current one and this action is not called.

Note that each clip can have it’s required frame range specified, and that you can specify discontinuous sets of ranges for each clip, for example

// The effect always needs the initial frame of the source as well as the previous and current frame
double rangeSource[4];

// required ranges on the source
rangeSource[0] = 0; // we always need frame 0 of the source
rangeSource[1] = 0;
rangeSource[2] = currentFrame - 1; // we also need the previous and current frame on the source
rangeSource[3] = currentFrame;

gPropHost->propSetDoubleN(outArgs, "OfxImageClipPropFrameRange_Source", 4, rangeSource);

 Which sets two discontinuous range of frames from the 'Source' clip
required as input.

The default frame range is simply the single frame, kOfxPropTime..kOfxPropTime, found on the inArgs property set. All the frame ranges in the outArgs property set must initialised to this value before the action is called.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following property
	kOfxPropTime the effect time for which we need to calculate the frames needed on input

	outArgs has a set of properties, one for each input clip, named OfxImageClipPropFrameRange_ with the name of the clip post-pended. For example OfxImageClipPropFrameRange_Source. All these properties are multi-dimensional doubles, with the dimension is a multiple of two. Each pair of values indicates a continuous range of frames that is needed on the given input. They are all initalised to the default value.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one frame range in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionIsIdentity

	Sometimes an effect can pass through an input uprocessed, for example a blur effect with a blur size of 0. This action can be called by a host before it attempts to render an effect to determine if it can simply copy input directly to output without having to call the render action on the effect.

If the effect does not need to process any pixels, it should set the value of the kOfxPropName to the clip that the host should us as the output instead, and the kOfxPropTime property on outArgs to be the time at which the frame should be fetched from a clip.

The default action is to call the render action on the effect.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the time at which to test for identity

	kOfxImageEffectPropFieldToRender the field to test for identity

	kOfxImageEffectPropRenderWindow the window (in \ref PixelCoordinates) to test for identity under

	kOfxImageEffectPropRenderScale the scale factor being applied to the images being renderred

	outArgs – has the following properties which the plugin can set
	kOfxPropName this to the name of the clip that should be used if the effect is an identity transform, defaults to the empty string

	kOfxPropTime the time to use from the indicated source clip as an identity image (allowing time slips to happen), defaults to the value in kOfxPropTime in inArgs

	Returns:

	
	kOfxStatOK, the action was trapped and the effect should not have its render action called, the values in outArgs indicate what frame from which clip to use instead

	kOfxStatReplyDefault, the action was not trapped and the host should call the render action

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionRender

	This action is where an effect gets to push pixels and turn its input clips and parameter set into an output image. This is possibly quite complicated and covered in the Rendering Image Effects chapter.

The render action must be trapped by the plug-in, it cannot return kOfxStatReplyDefault. The pixels needs be pushed I’m afraid.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the time at which to render

	kOfxImageEffectPropFieldToRender the field to render

	kOfxImageEffectPropRenderWindow the window (in \ref PixelCoordinates) to render

	kOfxImageEffectPropRenderScale the scale factor being applied to the images being renderred

	kOfxImageEffectPropSequentialRenderStatus whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus if the render is in response to a user modifying the effect in an interactive session

	kOfxImageEffectPropRenderQualityDraft if the render should be done in draft mode (e.g. for faster scrubbing)

	outArgs – is redundant and should be set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	kOfxImageEffectActionBeginSequenceRender has been called on the instance

	Post:

	
	kOfxImageEffectActionEndSequenceRender action will be called on the instance

	Returns:

	
	kOfxStatOK, the effect rendered happily

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionBeginSequenceRender

	This action is passed to an image effect before it renders a range of frames. It is there to allow an effect to set things up for a long sequence of frames. Note that this is still called, even if only a single frame is being rendered in an interactive environment.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxImageEffectPropFrameRange the range of frames (inclusive) that will be renderred

	kOfxImageEffectPropFrameStep what is the step between frames, generally set to 1 (for full frame renders) or 0.5 (for fielded renders)

	kOfxPropIsInteractive is this a single frame render due to user interaction in a GUI, or a proper full sequence render.

	kOfxImageEffectPropRenderScale the scale factor to apply to images for this call

	kOfxImageEffectPropSequentialRenderStatus whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus if the render is in response to a user modifying the effect in an interactive session

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	Post:

	
	kOfxImageEffectActionRender action will be called at least once on the instance

	kOfxImageEffectActionEndSequenceRender action will be called on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and handled cleanly by the effect,

	kOfxStatReplyDefault, the action was not trapped, but all is well anyway,

	kOfxStatErrMemory, in which case the action may be called again after a memory purge,

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message,

	kOfxStatErrFatal

	
kOfxImageEffectActionEndSequenceRender

	This action is passed to an image effect after is has rendered a range of frames. It is there to allow an effect to free resources after a long sequence of frame renders. Note that this is still called, even if only a single frame is being rendered in an interactive environment.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxImageEffectPropFrameRange the range of frames (inclusive) that will be rendered

	kOfxImageEffectPropFrameStep what is the step between frames, generally set to 1 (for full frame renders) or 0.5 (for fielded renders),

	kOfxPropIsInteractive

	is this a single frame render due to user interaction in a GUI, or a proper full sequence render.

	kOfxImageEffectPropRenderScale

	the scale factor to apply to images for this call

	kOfxImageEffectPropSequentialRenderStatus

	whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus

	if the render is in response to a user modifying the effect in an interactive session

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	kOfxImageEffectActionEndSequenceRender action was called on the instance

	kOfxImageEffectActionRender action was called at least once on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and handled cleanly by the effect,

	kOfxStatReplyDefault, the action was not trapped, but all is well anyway,

	kOfxStatErrMemory, in which case the action may be called again after a memory purge,

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message,

	kOfxStatErrFatal

	
kOfxImageEffectActionGetClipPreferences

	This action allows a plugin to dynamically specify its preferences for input and output clips. Please see Image Effect Clip Preferences for more details on the behaviour. Clip preferences are constant for the duration of an effect, so this action need only be called once per clip, not once per frame.

This should be called once after creation of an instance, each time an input clip is changed, and whenever a parameter named in the kOfxImageEffectPropClipPreferencesSlaveParam has its value changed.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – has the following properties which the plugin can set
	a set of char * X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropComponents_ post pended with the clip’s name. This must be set to one of the component types which the host supports and the effect stated it can accept on that input

	a set of char * X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropDepth_ post pended with the clip’s name. This must be set to one of the pixel depths both the host and plugin supports

	a set of double X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropPAR_ post pended with the clip’s name. This is the pixel aspect ratio of the input and output clips. This must be set to a positive non zero double value,

	kOfxImageEffectPropFrameRate the frame rate of the output clip, this must be set to a positive non zero double value

	kOfxImageClipPropFieldOrder the fielding of the output clip

	kOfxImageEffectPropPreMultiplication the premultiplication of the output clip

	kOfxImageClipPropContinuousSamples whether the output clip can produce different images at non-frame intervals, defaults to false,

	kOfxImageEffectFrameVarying whether the output clip can produces different images at different times, even if all parameters and inputs are constant, defaults to false.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one of the properties in the outArgs was changed from its default value

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetTimeDomain

	This action allows a host to ask an effect what range of frames it can produce images over. Only effects instantiated in the GeneralContext” can have this called on them. In all other the host is in strict control over the temporal duration of the effect.

The default is:

	the union of all the frame ranges of the non optional input clips,

	infinite if there are no non optional input clips.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is null

	outArgs – has the following property
	kOfxImageEffectPropFrameRange the frame range an effect can produce images for

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	the effect instance has been created in the general effect context

	Returns:

	
	kOfxStatOK, the action was trapped and the kOfxImageEffectPropFrameRange was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default value

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

Actions Passed to an Interact

This chapter describes the actions that can be issued to an interact’s
main entry point. Interact actions are also generic in character, they
could be issued to other plug-in types rather than just Image Effects,
however they are not issued directly to an effect’s main entry point,
they are rather issued to separate entry points which exist on specific
‘interact’ objects that a plugin may create.

For nearly all the actions the handle passed to to main entry point
for an interact will be either NULL, or a value that should be cast to
an OfxInteractHandle.

	
kOfxActionDescribeInteract

	This action is the first action passed to an interact. It is where an interact defines how it behaves and the resources it needs to function. If not trapped, the default action is for the host to carry on as normal Note that the handle passed in acts as a descriptor for, rather than an instance of the interact.

	Parameters:

	
	handle – handle to the interact descriptor, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	The plugin has been loaded and the effect described.

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatErrMemory in which case describe may be called again after a memory purge

	kOfxStatFailed something was wrong, the host should ignore the interact

	kOfxStatErrFatal

	
kOfxActionCreateInstanceInteract

	This action is the first action passed to an interact instance after its creation. It is there to allow a plugin to create any per-instance data structures it may need.

	Parameters:

	
	handle – handle to the interact instance, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called on this interact

	Post:

	
	the instance pointer will be valid until the kOfxActionDestroyInstance action is passed to the plug-in with the same instance handle

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored, but all was well anyway

	kOfxStatErrFatal

	kOfxStatErrMemory in which case this may be called again after a memory purge

	kOfxStatFailed in which case the host should ignore this interact

	
kOfxActionDestroyInstanceInteract

	This action is the last passed to an interact’s instance before its destruction. It is there to allow a plugin to destroy any per-instance data structures it may have created.

	Parameters:

	
	handle – handle to the interact instance, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the handle,

	the instance has not had any of its members destroyed yet

	Post:

	
	the instance pointer is no longer valid and any operation on it will be undefined

	Returns:

	To some extent, what is returned is moot, a bit like throwing an exception in a C++ destructor, so the host should continue destruction of the instance regardless
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored as the effect had nothing to do

	kOfxStatErrFatal

	kOfxStatFailed something went wrong, but no error code appropriate.

	
kOfxInteractActionDraw

	This action is issued to an interact whenever the host needs the plugin to redraw the given interact.

The interact should either issue OpenGL calls to draw itself, or use DrawSuite calls.

If this is called via kOfxImageEffectPluginPropOverlayInteractV2, drawing MUST use DrawSuite.

If this is called via kOfxImageEffectPluginPropOverlayInteractV1, drawing SHOULD use OpenGL. Some existing plugins may use DrawSuite via kOfxImageEffectPluginPropOverlayInteractV1 if it’s supported by the host, but this is discouraged.

Note that the interact may (in the case of custom parameter GUIS) or may not (in the case of image effect overlays) be required to swap buffers, that is up to the kind of interact.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle

	the openGL context for this interact has been set

	the projection matrix will correspond to the interact’s cannonical view

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored

	kOfxStatErrFatal

	kOfxStatFailed something went wrong, the host should ignore this interact in future

	
kOfxInteractActionPenMotion

	This action is issued whenever the pen moves an the interact’s has focus. It should be issued whether the pen is currently up or down. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition postion of the pen in,

	kOfxInteractPropPenViewportPosition position of the pen in,

	kOfxInteractPropPenPressure the pressure of the pen,

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionPenDown

	This action is issued when a pen transitions for the ‘up’ to the ‘down’ state. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin,
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition position of the pen in

	kOfxInteractPropPenViewportPosition position of the pen in

	kOfxInteractPropPenPressure the pressure of the pen

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK, the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionPenUp

	This action is issued when a pen transitions for the ‘down’ to the ‘up’ state. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin,
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition position of the pen in

	kOfxInteractPropPenViewportPosition position of the pen in

	kOfxInteractPropPenPressure the pressure of the pen

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK, the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyDown

	This action is issued when a key on the keyboard is depressed. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyUp

	This action is issued when a key on the keyboard is released. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyRepeat

	This action is issued when a key on the keyboard is repeated. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionGainFocus

	This action is issued when an interact gains input focus. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact is being used on,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels,

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK the action was trapped

	kOfxStatReplyDefault the action was not trapped

	
kOfxInteractActionLoseFocus

	This action is issued when an interact loses input focus. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact is being used on,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels,

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK the action was trapped

	kOfxStatReplyDefault the action was not trapped

OpenFX suites reference

This table list all suites available in the OpenFX standard

	OfxPropertySuiteV1

	OfxImageEffectSuiteV1

	OfxProgressSuiteV1

	OfxTimeLineSuiteV1

	OfxParameterSuiteV1

	OfxParametricParameterSuiteV1

	OfxMemorySuiteV1

	OfxMultiThreadSuiteV1

	OfxInteractSuiteV1

	OfxMessageSuiteV1

	OfxMessageSuiteV2

	OfxImageEffectOpenGLRenderSuiteV1

	OfxDrawSuiteV1: Drawing Overlays

OfxPropertySuiteV1

The files ofxCore.h and ofxProperty.h contain the basic
definitions for the property suite.

The property suite is the most basic and important suite in OFX, it is
used to get and set the values of various objects defined by other
suites.

A property is a named value of a specific data type, such values can be
multi-dimensional, but is typically of one dimension. The name is a ‘C’
string literal, typically #defined in one of the various OFX header
files. For example, the property labeled by the string literal
"OfxPropName" is a ‘C’ string which holds the name of some object.

Properties are not accessed in isolation, but are grouped and accessed
through a property set handle. The number and types of properties on a
specific property set handle are currently strictly defined by the API
that the properties are being used for. There is no scope to add new
properties.

There is a naming convention for property labels and the macros #defined
to them. The scheme is,

	generic properties names start with
“OfxProp”
+ name of the property, e.g. “OfxPropTime”.

	properties pertaining to a specific object with
“Ofx”
+ object name +
“Prop”
+ name of the property, e.g. “OfxParamPropAnimates”.

	the C preprocessor #define used to define the string literal is the
same as the string literal, but with
“k”
prepended to the name. For example,
#define kOfxPropLabel “OfxPropLabel”

OfxPropertySetHandle
OfxPropertySetHandle
Blind data type used to hold sets of properties:

#include "ofxCore.h"
typedef struct OfxPropertySetStruct *OfxPropertySetHandle;

Description

Properties are not accessed on their own, nor do they exist on their
own. They are grouped and manipulated via an OfxPropertySetHandle.

Any object that has properties can be made to return it’s property set
handle via some call on the relevant suite. Individual properties are
then manipulated with the property suite through that handle.

	
struct OfxPropertySuiteV1

	The OFX suite used to access properties on OFX objects.

Public Members

	
OfxStatus (*propSetPointer)(OfxPropertySetHandle properties, const char *property, int index, void *value)

	Set a single value in a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetString)(OfxPropertySetHandle properties, const char *property, int index, const char *value)

	Set a single value in a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDouble)(OfxPropertySetHandle properties, const char *property, int index, double value)

	Set a single value in a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetInt)(OfxPropertySetHandle properties, const char *property, int index, int value)

	Set a single value in an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void *const *value)

	Set multiple values of the pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetStringN)(OfxPropertySetHandle properties, const char *property, int count, const char *const *value)

	Set multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, const double *value)

	Set multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetIntN)(OfxPropertySetHandle properties, const char *property, int count, const int *value)

	Set multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propGetPointer)(OfxPropertySetHandle properties, const char *property, int index, void **value)

	Get a single value from a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetString)(OfxPropertySetHandle properties, const char *property, int index, char **value)

	Get a single value of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDouble)(OfxPropertySetHandle properties, const char *property, int index, double *value)

	Get a single value of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetInt)(OfxPropertySetHandle properties, const char *property, int index, int *value)

	Get a single value of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void **value)

	Get multiple values of a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetStringN)(OfxPropertySetHandle properties, const char *property, int count, char **value)

	Get multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, double *value)

	Get multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetIntN)(OfxPropertySetHandle properties, const char *property, int count, int *value)

	Get multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propReset)(OfxPropertySetHandle properties, const char *property)

	Resets all dimensions of a property to its default value.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	
OfxStatus (*propGetDimension)(OfxPropertySetHandle properties, const char *property, int *count)

	Gets the dimension of the property.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	count is a pointer to an integer where the value is returned

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

OfxImageEffectSuiteV1

	
struct OfxImageEffectSuiteV1

	The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

Public Members

	
OfxStatus (*getPropertySet)(OfxImageEffectHandle imageEffect, OfxPropertySetHandle *propHandle)

	Retrieves the property set for the given image effect.

	imageEffect image effect to get the property set for

	propHandle pointer to a the property set pointer, value is returned here

The property handle is for the duration of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*getParamSet)(OfxImageEffectHandle imageEffect, OfxParamSetHandle *paramSet)

	Retrieves the parameter set for the given image effect.

	imageEffect image effect to get the property set for

	paramSet pointer to a the parameter set, value is returned here

The param set handle is valid for the lifetime of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipDefine)(OfxImageEffectHandle imageEffect, const char *name, OfxPropertySetHandle *propertySet)

	Define a clip to the effect.

	pluginHandle - the handle passed into ‘describeInContext’ action

	name - unique name of the clip to define

	propertySet - a property handle for the clip descriptor will be returned here

This function defines a clip to a host, the returned property set is used to describe various aspects of the clip to the host. Note that this does not create a clip instance.

	Pre:

	
	we are inside the describe in context action.

	Return:

	

	
OfxStatus (*clipGetHandle)(OfxImageEffectHandle imageEffect, const char *name, OfxImageClipHandle *clip, OfxPropertySetHandle *propertySet)

	Get the propery handle of the named input clip in the given instance.

	imageEffect - an instance handle to the plugin

	name - name of the clip, previously used in a clip define call

	clip - where to return the clip

	propertySet if not null, the descriptor handle for a parameter’s property set will be placed here.

The propertySet will have the same value as would be returned by OfxImageEffectSuiteV1::clipGetPropertySet This return a clip handle for the given instance, note that this will \em not be the same as the
clip handle returned by clipDefine and will be distanct to clip handles in any other instance
of the plugin.

Not a valid call in any of the describe actions.

	Pre:

	
	create instance action called,

	name passed to clipDefine for this context,

	not inside describe or describe in context actions.

	Post:

	
	handle will be valid for the life time of the instance.

	
OfxStatus (*clipGetPropertySet)(OfxImageClipHandle clip, OfxPropertySetHandle *propHandle)

	Retrieves the property set for a given clip.

	clip clip effect to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the clip, which is generally the lifetime of the instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipGetImage)(OfxImageClipHandle clip, OfxTime time, const OfxRectD *region, OfxPropertySetHandle *imageHandle)

	Get a handle for an image in a clip at the indicated time and indicated region.

	clip - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - property set containing the image’s data

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

If clipGetImage is called twice with the same parameters, then two separate image handles will be returned, each of which must be release. The underlying implementation could share image data pointers and use reference counting to maintain them.

	Pre:

	
	clip was returned by clipGetHandle

	Post:

	
	image handle is only valid for the duration of the action clipGetImage is called in

	image handle to be disposed of by clipReleaseImage before the action returns

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
OfxStatus (*clipReleaseImage)(OfxPropertySetHandle imageHandle)

	Releases the image handle previously returned by clipGetImage.

	Pre:

	
	imageHandle was returned by clipGetImage

	Post:

	
	all operations on imageHandle will be invalid

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*clipGetRegionOfDefinition)(OfxImageClipHandle clip, OfxTime time, OfxRectD *bounds)

	Returns the spatial region of definition of the clip at the given time.

	clipHandle - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - handle where the image is returned

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

	Pre:

	
	clipHandle was returned by clipGetHandle

	Post:

	
	bounds will be filled the RoD of the clip at the indicated time

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
int (*abort)(OfxImageEffectHandle imageEffect)

	Returns whether to abort processing or not.

	imageEffect - instance of the image effect

A host may want to signal to a plugin that it should stop whatever rendering it is doing and start again. Generally this is done in interactive threads in response to users tweaking some parameter.

This function indicates whether a plugin should stop whatever processing it is doing.

	Return:

	
	0 if the effect should continue whatever processing it is doing

	1 if the effect should abort whatever processing it is doing

	
OfxStatus (*imageMemoryAlloc)(OfxImageEffectHandle instanceHandle, size_t nBytes, OfxImageMemoryHandle *memoryHandle)

	Allocate memory from the host’s image memory pool.

	instanceHandle - effect instance to associate with this memory allocation, may be NULL.

	nBytes - the number of bytes to allocate

	memoryHandle - pointer to the memory handle where a return value is placed

Memory handles allocated by this should be freed by OfxImageEffectSuiteV1::imageMemoryFree. To access the memory behind the handle you need to call OfxImageEffectSuiteV1::imageMemoryLock.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if all went well, a valid memory handle is placed in memoryHandle

	kOfxStatErrBadHandle if instanceHandle is not valid, memoryHandle is set to NULL

	kOfxStatErrMemory if there was not enough memory to satisfy the call, memoryHandle is set to NULL

	
OfxStatus (*imageMemoryFree)(OfxImageMemoryHandle memoryHandle)

	Frees a memory handle and associated memory.

	memoryHandle - memory handle returned by imageMemoryAlloc

This function frees a memory handle and associated memory that was previously allocated via OfxImageEffectSuiteV1::imageMemoryAlloc

If there are outstanding locks, these are ignored and the handle and memory are freed anyway.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was cleanly deleted

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc

	
OfxStatus (*imageMemoryLock)(OfxImageMemoryHandle memoryHandle, void **returnedPtr)

	Lock the memory associated with a memory handle and make it available for use.

	memoryHandle - memory handle returned by imageMemoryAlloc

	returnedPtr - where to the pointer to the locked memory

This function locks them memory associated with a memory handle and returns a pointer to it. The memory will be 16 byte aligned, to allow use of vector operations.

Note that memory locks and unlocks nest.

After the first lock call, the contents of the memory pointer to by returnedPtr is undefined. All subsequent calls to lock will return memory with the same contents as the previous call.

Also, if unlocked, then relocked, the memory associated with a memory handle may be at a different address.

See also OfxImageEffectSuiteV1::imageMemoryUnlock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was locked, a pointer is placed in returnedPtr

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

	kOfxStatErrMemory if there was not enough memory to satisfy the call, *returnedPtr is set to NULL

	
OfxStatus (*imageMemoryUnlock)(OfxImageMemoryHandle memoryHandle)

	Unlock allocated image data.

	allocatedData - pointer to memory previously returned by OfxImageEffectSuiteV1::imageAlloc

This function unlocks a previously locked memory handle. Once completely unlocked, memory associated with a memoryHandle is no longer available for use. Attempting to use it results in undefined behaviour.

Note that locks and unlocks nest, and to fully unlock memory you need to match the count of locks placed upon it.

Also note, if you unlock a completely unlocked handle, it has no effect (ie: the lock count can’t be negative).

If unlocked, then relocked, the memory associated with a memory handle may be at a different address, however the contents will remain the same.

See also OfxImageEffectSuiteV1::imageMemoryLock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was unlocked cleanly,

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

OfxProgressSuiteV1

	
struct OfxProgressSuiteV1

	A suite that provides progress feedback from a plugin to an application.

A plugin instance can initiate, update and close a progress indicator with this suite.

This is an optional suite in the Image Effect API.

API V1.4: Amends the documentation of progress suite V1 so that it is expected that it can be raised in a modal manner and have a “cancel” button when invoked in instanceChanged. Plugins that perform analysis post an appropriate message, raise the progress monitor in a modal manner and should poll to see if processing has been aborted. Any cancellation should be handled gracefully by the plugin (eg: reset analysis parameters to default values), clear allocated memory…

Many hosts already operate as described above. kOfxStatReplyNo should be returned to the plugin during progressUpdate when the user presses cancel.

Suite V2: Adds an ID that can be looked up for internationalisation and so on. When a new version is introduced, because plug-ins need to support old versions, and plug-in’s new releases are not necessary in synch with hosts (or users don’t immediately update), best practice is to support the 2 suite versions. That is, the plugin should check if V2 exists; if not then check if V1 exists. This way a graceful transition is guaranteed. So plugin should fetchSuite passing 2, (OfxProgressSuiteV2*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,2); and if no success pass (OfxProgressSuiteV1*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,1);

Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *label)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	label - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

OfxTimeLineSuiteV1

	
struct OfxImageEffectSuiteV1

	The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

Public Members

	
OfxStatus (*getPropertySet)(OfxImageEffectHandle imageEffect, OfxPropertySetHandle *propHandle)

	Retrieves the property set for the given image effect.

	imageEffect image effect to get the property set for

	propHandle pointer to a the property set pointer, value is returned here

The property handle is for the duration of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*getParamSet)(OfxImageEffectHandle imageEffect, OfxParamSetHandle *paramSet)

	Retrieves the parameter set for the given image effect.

	imageEffect image effect to get the property set for

	paramSet pointer to a the parameter set, value is returned here

The param set handle is valid for the lifetime of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipDefine)(OfxImageEffectHandle imageEffect, const char *name, OfxPropertySetHandle *propertySet)

	Define a clip to the effect.

	pluginHandle - the handle passed into ‘describeInContext’ action

	name - unique name of the clip to define

	propertySet - a property handle for the clip descriptor will be returned here

This function defines a clip to a host, the returned property set is used to describe various aspects of the clip to the host. Note that this does not create a clip instance.

	Pre:

	
	we are inside the describe in context action.

	Return:

	

	
OfxStatus (*clipGetHandle)(OfxImageEffectHandle imageEffect, const char *name, OfxImageClipHandle *clip, OfxPropertySetHandle *propertySet)

	Get the propery handle of the named input clip in the given instance.

	imageEffect - an instance handle to the plugin

	name - name of the clip, previously used in a clip define call

	clip - where to return the clip

	propertySet if not null, the descriptor handle for a parameter’s property set will be placed here.

The propertySet will have the same value as would be returned by OfxImageEffectSuiteV1::clipGetPropertySet This return a clip handle for the given instance, note that this will \em not be the same as the
clip handle returned by clipDefine and will be distanct to clip handles in any other instance
of the plugin.

Not a valid call in any of the describe actions.

	Pre:

	
	create instance action called,

	name passed to clipDefine for this context,

	not inside describe or describe in context actions.

	Post:

	
	handle will be valid for the life time of the instance.

	
OfxStatus (*clipGetPropertySet)(OfxImageClipHandle clip, OfxPropertySetHandle *propHandle)

	Retrieves the property set for a given clip.

	clip clip effect to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the clip, which is generally the lifetime of the instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipGetImage)(OfxImageClipHandle clip, OfxTime time, const OfxRectD *region, OfxPropertySetHandle *imageHandle)

	Get a handle for an image in a clip at the indicated time and indicated region.

	clip - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - property set containing the image’s data

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

If clipGetImage is called twice with the same parameters, then two separate image handles will be returned, each of which must be release. The underlying implementation could share image data pointers and use reference counting to maintain them.

	Pre:

	
	clip was returned by clipGetHandle

	Post:

	
	image handle is only valid for the duration of the action clipGetImage is called in

	image handle to be disposed of by clipReleaseImage before the action returns

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
OfxStatus (*clipReleaseImage)(OfxPropertySetHandle imageHandle)

	Releases the image handle previously returned by clipGetImage.

	Pre:

	
	imageHandle was returned by clipGetImage

	Post:

	
	all operations on imageHandle will be invalid

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*clipGetRegionOfDefinition)(OfxImageClipHandle clip, OfxTime time, OfxRectD *bounds)

	Returns the spatial region of definition of the clip at the given time.

	clipHandle - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - handle where the image is returned

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

	Pre:

	
	clipHandle was returned by clipGetHandle

	Post:

	
	bounds will be filled the RoD of the clip at the indicated time

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
int (*abort)(OfxImageEffectHandle imageEffect)

	Returns whether to abort processing or not.

	imageEffect - instance of the image effect

A host may want to signal to a plugin that it should stop whatever rendering it is doing and start again. Generally this is done in interactive threads in response to users tweaking some parameter.

This function indicates whether a plugin should stop whatever processing it is doing.

	Return:

	
	0 if the effect should continue whatever processing it is doing

	1 if the effect should abort whatever processing it is doing

	
OfxStatus (*imageMemoryAlloc)(OfxImageEffectHandle instanceHandle, size_t nBytes, OfxImageMemoryHandle *memoryHandle)

	Allocate memory from the host’s image memory pool.

	instanceHandle - effect instance to associate with this memory allocation, may be NULL.

	nBytes - the number of bytes to allocate

	memoryHandle - pointer to the memory handle where a return value is placed

Memory handles allocated by this should be freed by OfxImageEffectSuiteV1::imageMemoryFree. To access the memory behind the handle you need to call OfxImageEffectSuiteV1::imageMemoryLock.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if all went well, a valid memory handle is placed in memoryHandle

	kOfxStatErrBadHandle if instanceHandle is not valid, memoryHandle is set to NULL

	kOfxStatErrMemory if there was not enough memory to satisfy the call, memoryHandle is set to NULL

	
OfxStatus (*imageMemoryFree)(OfxImageMemoryHandle memoryHandle)

	Frees a memory handle and associated memory.

	memoryHandle - memory handle returned by imageMemoryAlloc

This function frees a memory handle and associated memory that was previously allocated via OfxImageEffectSuiteV1::imageMemoryAlloc

If there are outstanding locks, these are ignored and the handle and memory are freed anyway.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was cleanly deleted

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc

	
OfxStatus (*imageMemoryLock)(OfxImageMemoryHandle memoryHandle, void **returnedPtr)

	Lock the memory associated with a memory handle and make it available for use.

	memoryHandle - memory handle returned by imageMemoryAlloc

	returnedPtr - where to the pointer to the locked memory

This function locks them memory associated with a memory handle and returns a pointer to it. The memory will be 16 byte aligned, to allow use of vector operations.

Note that memory locks and unlocks nest.

After the first lock call, the contents of the memory pointer to by returnedPtr is undefined. All subsequent calls to lock will return memory with the same contents as the previous call.

Also, if unlocked, then relocked, the memory associated with a memory handle may be at a different address.

See also OfxImageEffectSuiteV1::imageMemoryUnlock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was locked, a pointer is placed in returnedPtr

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

	kOfxStatErrMemory if there was not enough memory to satisfy the call, *returnedPtr is set to NULL

	
OfxStatus (*imageMemoryUnlock)(OfxImageMemoryHandle memoryHandle)

	Unlock allocated image data.

	allocatedData - pointer to memory previously returned by OfxImageEffectSuiteV1::imageAlloc

This function unlocks a previously locked memory handle. Once completely unlocked, memory associated with a memoryHandle is no longer available for use. Attempting to use it results in undefined behaviour.

Note that locks and unlocks nest, and to fully unlock memory you need to match the count of locks placed upon it.

Also note, if you unlock a completely unlocked handle, it has no effect (ie: the lock count can’t be negative).

If unlocked, then relocked, the memory associated with a memory handle may be at a different address, however the contents will remain the same.

See also OfxImageEffectSuiteV1::imageMemoryLock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was unlocked cleanly,

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

OfxParameterSuiteV1

	
struct OfxParameterSuiteV1

	The OFX suite used to define and manipulate user visible parameters.

Keyframe Handling

These functions allow the plug-in to delete and get information about keyframes.

To set keyframes, use paramSetValueAtTime().

paramGetKeyTime and paramGetKeyIndex use indices to refer to keyframes. Keyframes are stored by the host in increasing time order, so time(kf[i]) < time(kf[i+1]). Keyframe indices will change whenever keyframes are added, deleted, or moved in time, whether by the host or by the plug-in. They may vary between actions if the user changes a keyframe. The keyframe indices will not change within a single action.

	
OfxStatus (*paramGetNumKeys)(OfxParamHandle paramHandle, unsigned int *numberOfKeys)

	Returns the number of keyframes in the parameter.

	paramHandle parameter handle to interogate

	numberOfKeys pointer to integer where the return value is placed

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Returns the number of keyframes in the parameter.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetKeyTime)(OfxParamHandle paramHandle, unsigned int nthKey, OfxTime *time)

	Returns the time of the nth key.

	paramHandle parameter handle to interogate

	nthKey which key to ask about (0 to paramGetNumKeys -1), ordered by time

	time pointer to OfxTime where the return value is placed

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - the nthKey does not exist

	
OfxStatus (*paramGetKeyIndex)(OfxParamHandle paramHandle, OfxTime time, int direction, int *index)

	Finds the index of a keyframe at/before/after a specified time.

	paramHandle parameter handle to search

	time what time to search from

	direction
	== 0 indicates search for a key at the indicated time (some small delta)

	> 0 indicates search for the next key after the indicated time

	< 0 indicates search for the previous key before the indicated time

	index pointer to an integer which in which the index is returned set to -1 if no key was found

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatFailed - if the search failed to find a key

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramDeleteKey)(OfxParamHandle paramHandle, OfxTime time)

	Deletes a keyframe if one exists at the given time.

	paramHandle parameter handle to delete the key from

	time time at which a keyframe is

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - no key at the given time

	
OfxStatus (*paramDeleteAllKeys)(OfxParamHandle paramHandle)

	Deletes all keyframes from a parameter.

	paramHandle parameter handle to delete the keys from

	name parameter to delete the keyframes frome is

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

Public Members

	
OfxStatus (*paramDefine)(OfxParamSetHandle paramSet, const char *paramType, const char *name, OfxPropertySetHandle *propertySet)

	Defines a new parameter of the given type in a describe action.

	paramSet handle to the parameter set descriptor that will hold this parameter

	paramType type of the parameter to create, one of the kOfxParamType* #defines

	name unique name of the parameter

	propertySet if not null, a pointer to the parameter descriptor’s property set will be placed here.

This function defines a parameter in a parameter set and returns a property set which is used to describe that parameter.

This function does not actually create a parameter, it only says that one should exist in any subsequent instances. To fetch an parameter instance paramGetHandle must be called on an instance.

This function can always be called in one of a plug-in’s “describe” functions which defines the parameter sets common to all instances of a plugin.

	Return:

	
	kOfxStatOK - the parameter was created correctly

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrExists - if a parameter of that name exists already in this plugin

	kOfxStatErrUnknown - if the type is unknown

	kOfxStatErrUnsupported - if the type is known but unsupported

	
OfxStatus (*paramGetHandle)(OfxParamSetHandle paramSet, const char *name, OfxParamHandle *param, OfxPropertySetHandle *propertySet)

	Retrieves the handle for a parameter in a given parameter set.

	paramSet instance of the plug-in to fetch the property handle from

	name parameter to ask about

	param pointer to a param handle, the value is returned here

	propertySet if not null, a pointer to the parameter’s property set will be placed here.

Parameter handles retrieved from an instance are always distinct in each instance. The paramter handle is valid for the life-time of the instance. Parameter handles in instances are distinct from paramter handles in plugins. You cannot call this in a plugin’s describe function, as it needs an instance to work on.

	Return:

	
	kOfxStatOK - the parameter was found and returned

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramSetGetPropertySet)(OfxParamSetHandle paramSet, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter set.

	paramSet parameter set to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

Note

The property handle belonging to a parameter set is the same as the property handle belonging to the plugin instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetPropertySet)(OfxParamHandle param, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter.

	param parameter to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the parameter, which is the lifetime of the instance that owns the parameter

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetValue)(OfxParamHandle paramHandle, ...)

	Gets the current value of a parameter,.

	paramHandle parameter handle to fetch value from

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs … argument needs to be pointer to C variables of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example…

 OfxParamHandle myDoubleParam, *myColourParam;
 ofxHost->paramGetHandle(instance, "myDoubleParam", &myDoubleParam);
 double myDoubleValue;
 ofxHost->paramGetValue(myDoubleParam, &myDoubleValue);
 ofxHost->paramGetHandle(instance, "myColourParam", &myColourParam);
 double myR, myG, myB;
 ofxHost->paramGetValue(myColourParam, &myR, &myG, &myB);

Note

paramGetValue should only be called from within a kOfxActionInstanceChanged or interact action and never from the render actions (which should always use paramGetValueAtTime).

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the value of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetDerivative)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the derivative of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s derivative

This gets the derivative of the parameter at the indicated time.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can have their derivatives found.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetIntegral)(OfxParamHandle paramHandle, OfxTime time1, OfxTime time2, ...)

	Gets the integral of a parameter over a specific time range,.

	paramHandle parameter handle to fetch integral from

	time1 where to start evaluating the integral

	time2 where to stop evaluating the integral

	… one or more pointers to variables of the relevant type to hold the parameter’s integral

This gets the integral of the parameter over the specified time range.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can be integrated.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValue)(OfxParamHandle paramHandle, ...)

	Sets the current value of a parameter.

	paramHandle parameter handle to set value in

	… one or more variables of the relevant type to hold the parameter’s value

This sets the current value of a parameter. The varargs … argument needs to be values of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example… ofxHost->paramSetValue(instance, "myDoubleParam", double(10));
 ofxHost->paramSetValue(instance, "myColourParam", double(pix.r), double(pix.g), double(pix.b));

Note

paramSetValue should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Keyframes the value of a parameter at a specific time.

	paramHandle parameter handle to set value in

	time at what point in time to set the keyframe

	… one or more variables of the relevant type to hold the parameter’s value

This sets a keyframe in the parameter at the indicated time to have the indicated value. The varargs … argument needs to be values of the relevant type for this parameter. See the note on OfxParameterSuiteV1::paramSetValue for more detail

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Note

paramSetValueAtTime should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramCopy)(OfxParamHandle paramTo, OfxParamHandle paramFrom, OfxTime dstOffset, const OfxRangeD *frameRange)

	Copies one parameter to another, including any animation etc…

	paramTo parameter to set

	paramFrom parameter to copy from

	dstOffset temporal offset to apply to keys when writing to the paramTo

	frameRange if paramFrom has animation, and frameRange is not null, only this range of keys will be copied

This copies the value of paramFrom to paramTo, including any animation it may have. All the previous values in paramTo will be lost.

To choose all animation in paramFrom set frameRange to [0, 0]

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Pre:

	
	Both parameters must be of the same type.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramEditBegin)(OfxParamSetHandle paramSet, const char *name)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

	name label to attach to any undo/redo string UTF8

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the start of a set of a parameter changes that should be considered part of a single undo/redo block.

See also OfxParameterSuiteV1::paramEditEnd

Note

paramEditBegin should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

	
OfxStatus (*paramEditEnd)(OfxParamSetHandle paramSet)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the end of a set of parameter changes that should be considerred part of a single undo/redo block

See also OfxParameterSuiteV1::paramEditBegin

Note

paramEditEnd should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

OfxParametricParameterSuiteV1

	
struct OfxParametricParameterSuiteV1

	The OFX suite used to define and manipulate ‘parametric’ parameters.

This is an optional suite.

Parametric parameters are in effect ‘functions’ a plug-in can ask a host to arbitrarily evaluate for some value ‘x’. A classic use case would be for constructing look-up tables, a plug-in would ask the host to evaluate one at multiple values from 0 to 1 and use that to fill an array.

A host would probably represent this to a user as a cubic curve in a standard curve editor interface, or possibly through scripting. The user would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are returning values based on some arbitrary argument orthogonal to time, so to evaluate such a param, you need to pass a parametric position and time.

Often, you would want such a parametric parameter to be multi-dimensional, for example, a colour look-up table might want three values, one for red, green and blue. Rather than declare three separate parametric parameters, it would be better to have one such parameter with multiple values in it.

The major complication with these parameters is how to allow a plug-in to set values, and defaults. The default default value of a parametric curve is to be an identity lookup. If a plugin wishes to set a different default value for a curve, it can use the suite to set key/value pairs on the descriptor of the param. When a new instance is made, it will have these curve values as a default.

Public Members

	
OfxStatus (*parametricParamGetValue)(OfxParamHandle param, int curveIndex, OfxTime time, double parametricPosition, double *returnValue)

	Evaluates a parametric parameter.

	param handle to the parametric parameter

	curveIndex which dimension to evaluate

	time the time to evaluate to the parametric param at

	parametricPosition the position to evaluate the parametric param at

	returnValue pointer to a double where a value is returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNControlPoints)(OfxParamHandle param, int curveIndex, double time, int *returnValue)

	Returns the number of control points in the parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	returnValue pointer to an integer where the value is returned.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double *key, double *value)

	Returns the key/value pair of the nth control point.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	nthCtl the nth control point to get the value of

	key pointer to a double where the key will be returned

	value pointer to a double where the value will be returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamSetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double key, double value, bool addAnimationKey)

	Modifies an existing control point on a curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	nthCtl the control point to modify

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This modifies an existing control point. Note that by changing key, the order of the control point may be modified (as you may move it before or after anther point). So be careful when iterating over a curves control points and you change a key.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamAddControlPoint)(OfxParamHandle param, int curveIndex, double time, double key, double value, bool addAnimationKey)

	Adds a control point to the curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This will add a new control point to the given dimension of a parametric parameter. If a key exists sufficiently close to ‘key’, then it will be set to the indicated control point.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamDeleteControlPoint)(OfxParamHandle param, int curveIndex, int nthCtl)

	Deletes the nth control point from a parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to delete

	nthCtl the control point to delete

	
OfxStatus (*parametricParamDeleteAllControlPoints)(OfxParamHandle param, int curveIndex)

	Delete all curve control points on the given param.

	param handle to the parametric parameter

	curveIndex which dimension to clear

OfxMemorySuiteV1

	
struct OfxMemorySuiteV1

	The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

Public Members

	
OfxStatus (*memoryAlloc)(void *handle, size_t nBytes, void **allocatedData)

	Allocate memory.

	handle - effect instance to assosciate with this memory allocation, or NULL.

	nBytes - the number of bytes to allocate

	allocatedData - a pointer to the return value. Allocated memory will be alligned for any use.

This function has the host allocate memory using its own memory resources and returns that to the plugin.

	Return:

	
	kOfxStatOK the memory was sucessfully allocated

	kOfxStatErrMemory the request could not be met and no memory was allocated

	
OfxStatus (*memoryFree)(void *allocatedData)

	Frees memory.

	allocatedData - pointer to memory previously returned by OfxMemorySuiteV1::memoryAlloc

This function frees any memory that was previously allocated via OfxMemorySuiteV1::memoryAlloc.

	Return:

	
	kOfxStatOK the memory was sucessfully freed

	kOfxStatErrBadHandle allocatedData was not a valid pointer returned by OfxMemorySuiteV1::memoryAlloc

OfxMultiThreadSuiteV1

	
struct OfxMultiThreadSuiteV1

	OFX suite that provides simple SMP style multi-processing.

Public Members

	
OfxStatus (*multiThread)(OfxThreadFunctionV1 func, unsigned int nThreads, void *customArg)

	Function to spawn SMP threads.

	func The function to call in each thread.

	nThreads The number of threads to launch

	customArg The paramter to pass to customArg of func in each thread.

This function will spawn nThreads separate threads of computation (typically one per CPU) to allow something to perform symmetric multi processing. Each thread will call ‘func’ passing in the index of the thread and the number of threads actually launched.

multiThread will not return until all the spawned threads have returned. It is up to the host how it waits for all the threads to return (busy wait, blocking, whatever).

nThreads can be more than the value returned by multiThreadNumCPUs, however the threads will be limitted to the number of CPUs returned by multiThreadNumCPUs.

This function cannot be called recursively.

	Return:

	
	kOfxStatOK, the function func has executed and returned sucessfully

	kOfxStatFailed, the threading function failed to launch

	kOfxStatErrExists, failed in an attempt to call multiThread recursively,

	
OfxStatus (*multiThreadNumCPUs)(unsigned int *nCPUs)

	Function which indicates the number of CPUs available for SMP processing.

	nCPUs pointer to an integer where the result is returned

This value may be less than the actual number of CPUs on a machine, as the host may reserve other CPUs for itself.

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to get the number of CPUs

	
OfxStatus (*multiThreadIndex)(unsigned int *threadIndex)

	Function which indicates the index of the current thread.

	threadIndex pointer to an integer where the result is returned

This function returns the thread index, which is the same as the threadIndex argument passed to the OfxThreadFunctionV1.

If there are no threads currently spawned, then this function will set threadIndex to 0

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to return an index

	
int (*multiThreadIsSpawnedThread)(void)

	Function to enquire if the calling thread was spawned by multiThread.

	Return:

	
	0 if the thread is not one spawned by multiThread

	1 if the thread was spawned by multiThread

	
OfxStatus (*mutexCreate)(OfxMutexHandle *mutex, int lockCount)

	Create a mutex.

	mutex - where the new handle is returned

	count - initial lock count on the mutex. This can be negative.

Creates a new mutex with lockCount locks on the mutex intially set.

	Return:

	
	kOfxStatOK - mutex is now valid and ready to go

	
OfxStatus (*mutexDestroy)(const OfxMutexHandle mutex)

	Destroy a mutex.

Destroys a mutex intially created by mutexCreate.

	Return:

	
	kOfxStatOK - if it destroyed the mutex

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexLock)(const OfxMutexHandle mutex)

	Blocking lock on the mutex.

This trys to lock a mutex and blocks the thread it is in until the lock suceeds.

A sucessful lock causes the mutex’s lock count to be increased by one and to block any other calls to lock the mutex until it is unlocked.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexUnLock)(const OfxMutexHandle mutex)

	Unlock the mutex.

This unlocks a mutex. Unlocking a mutex decreases its lock count by one.

	Return:

	
	kOfxStatOK if it released the lock

	kOfxStatErrBadHandle if the handle was bad

	
OfxStatus (*mutexTryLock)(const OfxMutexHandle mutex)

	Non blocking attempt to lock the mutex.

This attempts to lock a mutex, if it cannot, it returns and says so, rather than blocking.

A sucessful lock causes the mutex’s lock count to be increased by one, if the lock did not suceed, the call returns immediately and the lock count remains unchanged.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatFailed - if it did not get the lock

	kOfxStatErrBadHandle - if the handle was bad

OfxInteractSuiteV1

	
struct OfxInteractSuiteV1

	OFX suite that allows an effect to interact with an openGL window so as to provide custom interfaces.

Public Members

	
OfxStatus (*interactSwapBuffers)(OfxInteractHandle interactInstance)

	Requests an openGL buffer swap on the interact instance.

	
OfxStatus (*interactRedraw)(OfxInteractHandle interactInstance)

	Requests a redraw of the interact instance.

	
OfxStatus (*interactGetPropertySet)(OfxInteractHandle interactInstance, OfxPropertySetHandle *property)

	Gets the property set handle for this interact handle.

OfxMessageSuiteV1

	
struct OfxMessageSuiteV1

	The OFX suite that allows a plug-in to pass messages back to a user. The V2 suite extends on this in a backwards compatible manner.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a message on the host, using printf style varargs.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

OfxMessageSuiteV2

	
struct OfxMessageSuiteV2

	The OFX suite that allows a plug-in to pass messages back to a user.

This extends OfxMessageSuiteV1, and should be considered a replacement to version 1.

Note that this suite has been extended in backwards compatible manner, so that a host can return this struct for both V1 and V2.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a transient message on the host, using printf style varargs. Same as the V1 message suite call.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*setPersistentMessage)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a persistent message on an effect, using printf style varargs, and set error states. New for V2 message suite.

	handle - effect instance handle the message should be associated with, may NOT be null,

	messageType - string describing the kind of message to post, should be one of…
	kOfxMessageError

	kOfxMessageWarning

	kOfxMessageMessage

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

Persistent messages are associated with an effect handle until explicitly cleared by an effect. So if an error message is posted the error state, and associated message will persist and be displayed on the effect appropriately. (eg: draw a node in red on a node based compostor and display the message when clicked on).

If messageType is error or warning, associated error states should be flagged on host applications. Posting an error message implies that the host cannot proceeed, a warning allows the host to proceed, whilst a simple message should have no stop anything.

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*clearPersistentMessage)(void *handle)

	Clears any persistent message on an effect handle that was set by OfxMessageSuiteV2::setPersistentMessage. New for V2 message suite.

	handle - effect instance handle messages should be cleared from.

	handle - effect handle (descriptor or instance)

Clearing a message will clear any associated error state.

	Return:

	
	kOfxStatOK - if the message was sucessfully cleared

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be cleared for some reason

OfxImageEffectOpenGLRenderSuiteV1

	
struct OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

Public Members

	
OfxStatus (*clipLoadTexture)(OfxImageClipHandle clip, OfxTime time, const char *format, const OfxRectD *region, OfxPropertySetHandle *textureHandle)

	loads an image from an OFX clip as a texture into OpenGL

	clip - the clip to load the image from

	time - effect time to load the image from

	format - the requested texture format (As in none,byte,word,half,float, etc..) When set to NULL, the host decides the format based on the plug-in’s kOfxOpenGLPropPixelDepth setting.

	region - region of the image to load (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	textureHandle - a property set containing information about the texture

An image is fetched from a clip at the indicated time for the given region and loaded into an OpenGL texture. When a specific format is requested, the host ensures it gives the requested format. When the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the kOfxImageEffectActionRender action. If the region parameter is set to non-NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set or is NULL, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped to the clip’s Region of Definition. Information about the texture, including the texture index, is returned in the textureHandle argument. The properties on this handle will be…
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

With the exception of the OpenGL specifics, these properties are the same as the properties in an image handle returned by clipGetImage in the image effect suite.

Note

	this is the OpenGL equivalent of clipGetImage from OfxImageEffectSuiteV1

	Pre:

	
	clip was returned by clipGetHandle

	Format property in the texture handle

	Post:

	
	texture handle to be disposed of by clipFreeTexture before the action returns

	when the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the render action.

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - not enough OpenGL memory was available for the effect to load the texture. The plugin should abort the GL render and return kOfxStatErrMemory, after which the host can decide to retry the operation with CPU based processing.

	
OfxStatus (*clipFreeTexture)(OfxPropertySetHandle textureHandle)

	Releases the texture handle previously returned by clipLoadTexture.

For input clips, this also deletes the texture from OpenGL. This should also be called on the output clip; for the Output clip, it just releases the handle but does not delete the texture (since the host will need to read it).

	Pre:

	
	textureHandle was returned by clipGetImage

	Post:

	
	all operations on textureHandle will be invalid, and the OpenGL texture it referred to has been deleted (for source clips)

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - general failure for some reason,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*flushResources)()

	Request the host to minimize its GPU resource load.

When a plugin fails to allocate GPU resources, it can call this function to request the host to flush its GPU resources if it holds any. After the function the plugin can try again to allocate resources which then might succeed if the host actually has released anything.

	Pre:

	

	Post:

	
	No changes to the plugin GL state should have been made.

	Return:

	
	kOfxStatOK - the host has actually released some resources,

	kOfxStatReplyDefault - nothing the host could do..

Properties for GPU rendering with other acceleration methods:

	
group CudaRender

	
Defines

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

	
group MetalRender

	
Defines

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
group OpenClRender

	
Defines

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

OfxDrawSuiteV1: Drawing Overlays

Added for OFX v1.5, Jan 2022.

See the source at ofxDrawSuite.h [https://github.com/ofxa/openfx/blob/master/include/ofxDrawSuite.h]

	
struct OfxDrawSuiteV1

	OFX suite that allows an effect to draw to a host-defined display context.

Public Members

	
OfxStatus (*getColour)(OfxDrawContextHandle context, OfxStandardColour std_colour, OfxRGBAColourF *colour)

	Retrieves the host’s desired draw colour for.

	context - the draw context

	std_colour - the desired colour type

	colour - the returned RGBA colour

	Return:

	
	kOfxStatOK - the colour was returned

	kOfxStatErrValue - std_colour was invalid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setColour)(OfxDrawContextHandle context, const OfxRGBAColourF *colour)

	Sets the colour for future drawing operations (lines, filled shapes and text)

	context - the draw context

	colour - the RGBA colour

The host should use “over” compositing when using a non-opaque colour.

	Return:

	
	kOfxStatOK - the colour was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineWidth)(OfxDrawContextHandle context, float width)

	Sets the line width for future line drawing operations.

	context - the draw context

	width - the line width

Use width 0 for a single pixel line or non-zero for a smooth line of the desired width

The host should adjust for screen density.

	Return:

	
	kOfxStatOK - the width was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineStipple)(OfxDrawContextHandle context, OfxDrawLineStipplePattern pattern)

	Sets the stipple pattern for future line drawing operations.

	context - the draw context

	pattern - the desired stipple pattern

	Return:

	
	kOfxStatOK - the pattern was changed

	kOfxStatErrValue - pattern was not valid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*draw)(OfxDrawContextHandle context, OfxDrawPrimitive primitive, const OfxPointD *points, int point_count)

	Draws a primitive of the desired type.

	context - the draw context

	primitive - the desired primitive

	points - the array of points in the primitive

	point_count - the number of points in the array

kOfxDrawPrimitiveLines - like GL_LINES, n points draws n/2 separated lines kOfxDrawPrimitiveLineStrip - like GL_LINE_STRIP, n points draws n-1 connected lines kOfxDrawPrimitiveLineLoop - like GL_LINE_LOOP, n points draws n connected lines kOfxDrawPrimitiveRectangle - draws an axis-aligned filled rectangle defined by 2 opposite corner points kOfxDrawPrimitivePolygon - like GL_POLYGON, draws a filled n-sided polygon kOfxDrawPrimitiveEllipse - draws a axis-aligned elliptical line (not filled) within the rectangle defined by 2 opposite corner points

	Return:

	
	kOfxStatOK - the draw was completed

	kOfxStatErrValue - invalid primitive, or point_count not valid for primitive

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*drawText)(OfxDrawContextHandle context, const char *text, const OfxPointD *pos, int alignment)

	Draws text at the specified position.

	context - the draw context

	text - the text to draw (UTF-8 encoded)

	pos - the position at which to align the text

	alignment - the text alignment flags (see kOfxDrawTextAlignment*)

The text font face and size are determined by the host.

	Return:

	
	kOfxStatOK - the text was drawn

	kOfxStatErrValue - text or pos were not defined

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

#defines

	
kOfxInteractPropDrawContext

	The Draw Context handle.

	Type - pointer X 1

	Property Set - read only property on the inArgs of the following actions…

	kOfxInteractActionDraw

Enums

	
enum OfxStandardColour

	Defines valid values for OfxDrawSuiteV1::getColour.

Values:

	
enumerator kOfxStandardColourOverlayBackground

	

	
enumerator kOfxStandardColourOverlayActive

	

	
enumerator kOfxStandardColourOverlaySelected

	

	
enumerator kOfxStandardColourOverlayDeselected

	

	
enumerator kOfxStandardColourOverlayMarqueeFG

	

	
enumerator kOfxStandardColourOverlayMarqueeBG

	

	
enumerator kOfxStandardColourOverlayText

	

	
enum OfxDrawLineStipplePattern

	Defines valid values for OfxDrawSuiteV1::setLineStipple.

Values:

	
enumerator kOfxDrawLineStipplePatternSolid

	

	
enumerator kOfxDrawLineStipplePatternDot

	

	
enumerator kOfxDrawLineStipplePatternDash

	

	
enumerator kOfxDrawLineStipplePatternAltDash

	

	
enumerator kOfxDrawLineStipplePatternDotDash

	

	
enum OfxDrawPrimitive

	Defines valid values for OfxDrawSuiteV1::draw.

Values:

	
enumerator kOfxDrawPrimitiveLines

	

	
enumerator kOfxDrawPrimitiveLineStrip

	

	
enumerator kOfxDrawPrimitiveLineLoop

	

	
enumerator kOfxDrawPrimitiveRectangle

	

	
enumerator kOfxDrawPrimitivePolygon

	

	
enumerator kOfxDrawPrimitiveEllipse

	

Warning

doxygenenum: Cannot find enum “OfxDrawTextAligment” in doxygen xml output for project “ofx_reference” from directory: ../doxygen_build/xml/

Warning

This section is outdated and should be properly generated automatically from source code instead
of maintaining it aside

Properties by object reference

Properties on the Image Effect Host

	kOfxPropName
- (read only) the globally unique name of the application, eg:
“com.acmesofware.funkyCompositor”

	kOfxPropLabel
- (read only) the user visible name of the appliaction,

	kOfxPropVersion
- (read only) the version number of the host

	kOfxPropVersionLabel
- (read only) a user readable version label

	kOfxImageEffectHostPropIsBackground
- (read only) is the application a background renderrer

	kOfxImageEffectPropSupportsOverlays
- (read only) does the application support overlay interactive GUIs

	kOfxImageEffectPropSupportsMultiResolution
- (read only) does the application support images of different sizes

	kOfxImageEffectPropSupportsTiles
- (read only) does the application support image tiling

	kOfxImageEffectPropTemporalClipAccess
- (read only) does the application allow random temporal access to
source images

	kOfxImageEffectPropSupportedComponents
- (read only) a list of supported colour components

	kOfxImageEffectPropSupportedContexts
- (read only) a list of supported effect contexts

	kOfxImageEffectPropSupportsMultipleClipDepths
- (read only) does the application allow inputs and output clips to
have differing bit depths

	kOfxImageEffectPropSupportsMultipleClipPARs
- (read only) does the application allow inputs and output clips to
have differing pixel aspect ratios

	kOfxImageEffectPropSetableFrameRate
- (read only) does the application allow an effect to change the
frame rate of the output clip

	kOfxImageEffectPropSetableFielding
- (read only) does the application allow an effect to change the
fielding of the output clip

	kOfxParamHostPropSupportsCustomInteract
- (read only) does the application

	kOfxParamHostPropSupportsStringAnimation
- (read only) does the application allow the animation of string
parameters

	kOfxParamHostPropSupportsChoiceAnimation
- (read only) does the application allow the animation of choice
parameters

	kOfxParamHostPropSupportsBooleanAnimation
- (read only does the application allow the animation of boolean
parameters)

	kOfxParamHostPropSupportsCustomAnimation
- (read only) does the application allow the animation of custom
parameters

	kOfxParamHostPropMaxParameters
- (read only) the maximum number of parameters the application allows
a plug-in to have

	kOfxParamHostPropMaxPages
- (read only) the maximum number of parameter pages the application
allows a plug-in to have

	kOfxParamHostPropPageRowColumnCount
- (read only) the number of rows and columns on a page parameter

	kOfxPropHostOSHandle
- (read only) a pointer to an OS specific application handle (eg: the
root hWnd on Windows)

	kOfxParamHostPropSupportsParametricAnimation
- (read only) does the host support animation of parametric
parameters

	kOfxImageEffectInstancePropSequentialRender
- (read only) does the host support sequential rendering

	kOfxImageEffectPropOpenGLRenderSupported
- (read only) does the host support OpenGL accelerated rendering

	kOfxImageEffectPropRenderQualityDraft
- (read only) does the host support draft quality rendering

	kOfxImageEffectHostPropNativeOrigin
- (read only) native origin of the host

Properties on an Effect Descriptor

An image effect plugin (ie: that thing passed to the initial ‘describe’
action) has the following properties, these can only be set inside the
‘describe’ actions …

	kOfxPropType
- (read only)

	kOfxPropLabel
- (read/write)

	kOfxPropShortLabel
- (read/write)

	kOfxPropLongLabel
- (read/write)

	kOfxPropVersion
- (read only) the version number of the plugin

	kOfxPropVersionLabel
- (read only) a user readable version label

	kOfxPropPluginDescription
- (read/write), a short description of the plugin

	kOfxImageEffectPropSupportedContexts
- (read/write)

	kOfxImageEffectPluginPropGrouping
- (read/write)

	kOfxImageEffectPluginPropSingleInstance
- (read/write)

	kOfxImageEffectPluginRenderThreadSafety
- (read/write)

	kOfxImageEffectPluginPropHostFrameThreading
- (read/write)

	kOfxImageEffectPluginPropOverlayInteractV1
- (read/write)

	kOfxImageEffectPropSupportsMultiResolution
- (read/write)

	kOfxImageEffectPropSupportsTiles
- (read/write)

	kOfxImageEffectPropTemporalClipAccess
- (read/write)

	kOfxImageEffectPropSupportedPixelDepths
- (read/write)

	kOfxImageEffectPluginPropFieldRenderTwiceAlways
- (read/write)

	kOfxImageEffectPropSupportsMultipleClipDepths
- (read/write)

	kOfxImageEffectPropSupportsMultipleClipPARs
- (read/write)

	kOfxImageEffectPluginRenderThreadSafety
- (read/write)

	kOfxImageEffectPropClipPreferencesSlaveParam
- (read/write)

	kOfxImageEffectPropOpenGLRenderSupported
- (read and write)

	kOfxPluginPropFilePath
(read only)

Properties on an Effect Instance

An image effect instance has the following properties, all but
kOfxPropInstanceData and kOfxImageEffectInstancePropSequentialRender are
read only…

	kOfxPropType
- (read only)

	kOfxImageEffectPropContext
- (read only)

	kOfxPropInstanceData
- (read and write)

	kOfxImageEffectPropProjectSize
- (read only)

	kOfxImageEffectPropProjectOffset
- (read only)

	kOfxImageEffectPropProjectExtent
- (read only)

	kOfxImageEffectPropProjectPixelAspectRatio
- (read only)

	kOfxImageEffectInstancePropEffectDuration
- (read only)

	kOfxImageEffectInstancePropSequentialRender
- (read and write)

	kOfxImageEffectPropSupportsTiles
- (read/write)

	kOfxImageEffectPropOpenGLRenderSupported
- (read and write)

	kOfxImageEffectPropFrameRate
- (read only)

	kOfxPropIsInteractive
- (read only)

Properties on a Clip Descriptor

All OfxImageClipHandle accessed inside the kOfxActionDescribe or
kOfxActionDescribeInContext are clip descriptors, used to describe
the behaviour of clips in a specific context.

	kOfxPropType
- (read only) set to

	kOfxPropName
- (read only) the name the clip was created with

	kOfxPropLabel
- (read/write) the user visible label for the clip

	kOfxPropShortLabel
- (read/write)

	kOfxPropLongLabel
- (read/write)

	kOfxImageEffectPropSupportedComponents
- (read/write)

	kOfxImageEffectPropTemporalClipAccess
- (read/write)

	kOfxImageClipPropOptional
- (read/write)

	kOfxImageClipPropFieldExtraction
- (read/write)

	kOfxImageClipPropIsMask
- (read/write)

	kOfxImageEffectPropSupportsTiles
- (read/write)

Properties on a Clip Instance

	kOfxPropType
- (read only)

	kOfxPropName
- (read only)

	kOfxPropLabel
- (read only)

	kOfxPropShortLabel
- (read only)

	kOfxPropLongLabel
- (read only)

	kOfxImageEffectPropSupportedComponents
- (read only)

	kOfxImageEffectPropTemporalClipAccess
- (read only)

	kOfxImageClipPropOptional
- (read only)

	kOfxImageClipPropFieldExtraction
- (read only)

	kOfxImageClipPropIsMask
- (read only)

	kOfxImageEffectPropSupportsTiles
- (read only)

	kOfxImageEffectPropPixelDepth
- (read only)

	kOfxImageEffectPropComponents
- (read only)

	kOfxImageClipPropUnmappedPixelDepth
- (read only)

	kOfxImageClipPropUnmappedComponents
- (read only)

	kOfxImageEffectPropPreMultiplication
- (read only)

	kOfxImagePropPixelAspectRatio
- (read only)

	kOfxImageEffectPropFrameRate
- (read only)

	kOfxImageEffectPropFrameRange
- (read only)

	kOfxImageClipPropFieldOrder
- (read only)

	kOfxImageClipPropConnected
- (read only)

	kOfxImageEffectPropUnmappedFrameRange
- (read only)*

	kOfxImageEffectPropUnmappedFrameRate
- (read only)*

	kOfxImageClipPropContinuousSamples
- (read only)

Properties on an Image

All images are instances, there is no such thing as an image descriptor.

	kOfxPropType
- (read only)

	kOfxImageEffectPropPixelDepth
- (read only)

	kOfxImageEffectPropComponents
- (read only)

	kOfxImageEffectPropPreMultiplication
- (read only)

	kOfxImageEffectPropRenderScale
- (read only)

	kOfxImagePropPixelAspectRatio
- (read only)

	kOfxImagePropData
- (read only)

	kOfxImagePropBounds
- (read only)

	kOfxImagePropRegionOfDefinition
- (read only) *

	kOfxImagePropRowBytes
- (read only)

	kOfxImagePropField
- (read only)

	kOfxImagePropUniqueIdentifier
- (read only)

Properties on Parameter Set Instances

kOfxPropParamSetNeedsSyncing
, which indicates if private data is dirty and may need re-syncing to a
parameter set
.. ParameterProperties:

Properties on Parameter Descriptors and Instances

Properties Common to All Parameters

The following properties are common to all parameters….

	kOfxPropType
, which will always be
kOfxTypeParameter
(read only)

	kOfxPropName
read/write in the descriptor, read only on an instance

	kOfxPropLabel
read/write in the descriptor and instance

	kOfxPropShortLabel
read/write in the descriptor and instance

	kOfxPropLongLabel
read/write in the descriptor and instance

	kOfxParamPropType
read only in the descriptor and instance, the value is set on
construction

	kOfxParamPropSecret
read/write in the descriptor and instance

	kOfxParamPropHint
read/write in the descriptor and instance

	kOfxParamPropScriptName
read/write in the descriptor, read only on an instance

	kOfxParamPropParent
read/write in the descriptor, read only on an instance

	kOfxParamPropEnabled
read/write in the descriptor and instance

	kOfxParamPropDataPtr
read/write in the descriptor and instance

	kOfxPropIcon
, read/write on a descriptor, read only on an instance

Properties On Group Parameters

	kOfxParamPropGroupOpen
read/write in the descriptor, read only on an instance

Properties Common to All But Group and Page Parameters

	kOfxParamPropInteractV1
read/write in the descriptor, read only on an instance

	kOfxParamPropInteractSize
read/write in the descriptor, read only on an instance

	kOfxParamPropInteractSizeAspect
read/write in the descriptor, read only on an instance

	kOfxParamPropInteractMinimumSize
read/write in the descriptor, read only on an instance

	kOfxParamPropInteractPreferedSize
read/write in the descriptor, read only on an instance

	kOfxParamPropHasHostOverlayHandle
read only in the descriptor and instance

	kOfxParamPropUseHostOverlayHandle
read/write in the descriptor and read only in the instance

Properties Common to All Parameters That Hold Values

	kOfxParamPropDefault
read/write in the descriptor, read only on an instance

	kOfxParamPropAnimates
read/write in the descriptor, read only on an instance

	kOfxParamPropIsAnimating
read/write in the descriptor, read only on an instance

	kOfxParamPropIsAutoKeying
read/write in the descriptor, read only on an instance

	kOfxParamPropPersistant
read/write in the descriptor, read only on an instance

	kOfxParamPropEvaluateOnChange
read/write in the descriptor and instance

	kOfxParamPropPluginMayWrite
read/write in the descriptor, read only on an instance

	kOfxParamPropCacheInvalidation
read/write in the descriptor, read only on an instance

	kOfxParamPropCanUndo
read/write in the descriptor, read only on an instance

Properties Common to All Numeric Parameters

	kOfxParamPropMin
read/write in the descriptor and instance

	kOfxParamPropMax
read/write in the descriptor and instance

	kOfxParamPropDisplayMin
read/write in the descriptor and instance

	kOfxParamPropDisplayMax
read/write in the descriptor and instance

Properties Common to All Double Parameters

	kOfxParamPropIncrement
read/write in the descriptor and instance

	kOfxParamPropDigits
read/write in the descriptor and instance

Properties On 1D Double Parameters

	kOfxParamPropShowTimeMarker
read/write in the descriptor and instance

	kOfxParamPropDoubleType
read/write in the descriptor, read only on an instance

Properties On 2D and 3D Double Parameters

	kOfxParamPropDoubleType
read/write in the descriptor, read only on an instance

Properties On Non Normalised Spatial Double Parameters

	kOfxParamPropDefaultCoordinateSystem
read/write in the descriptor, read only on an instance

Properties On 2D and 3D Integer Parameters

	kOfxParamPropDimensionLabel
read/write in the descriptor, read only on an instance

Properties On String Parameters

	kOfxParamPropStringMode
read/write in the descriptor, read only on an instance

	kOfxParamPropStringFilePathExists
read/write in the descriptor, read only on an instance

Properties On Choice Parameters

	kOfxParamPropChoiceOption
read/write in the descriptor and instance

Properties On Custom Parameters

	kOfxParamPropCustomInterpCallbackV1
read/write in the descriptor, read only on an instance

Properties On Page Parameters

	kOfxParamPropPageChild
read/write in the descriptor, read only on an instance

On Parametric Parameters

	kOfxParamPropAnimates
read/write in the descriptor, read only on an instance

	kOfxParamPropIsAnimating
read/write in the descriptor, read only on an instance

	kOfxParamPropIsAutoKeying
read/write in the descriptor, read only on an instance

	kOfxParamPropPersistant
read/write in the descriptor, read only on an instance

	kOfxParamPropEvaluateOnChange
read/write in the descriptor and instance

	kOfxParamPropPluginMayWrite
read/write in the descriptor, read only on an instance

	kOfxParamPropCacheInvalidation
read/write in the descriptor, read only on an instance

	kOfxParamPropCanUndo
read/write in the descriptor, read only on an instance

	kOfxParamPropParametricDimension
read/write in the descriptor, read only on an instance

	kOfxParamPropParametricUIColour
read/write in the descriptor, read only on an instance

	kOfxParamPropParametricInteractBackground
read/write in the descriptor, read only on an instance

	kOfxParamPropParametricRange
read/write in the descriptor, read only on an instance

Properties on Interact Descriptors

	kOfxInteractPropHasAlpha
read only

	kOfxInteractPropBitDepth
read only

Properties on Interact Instances

	kOfxPropEffectInstance
read only

	kOfxPropInstanceData
read/write only

	kOfxInteractPropPixelScale
read only

	kOfxInteractPropBackgroundColour
read only

	kOfxInteractPropHasAlpha
read only

	kOfxInteractPropBitDepth
read only

	kOfxInteractPropSlaveToParam
read/write

	kOfxInteractPropSuggestedColour
read only

Properties Reference

	
kOfxImageClipPropConnected

	Says whether the clip is actually connected at the moment.

	Type - int X 1

	Property Set - clip instance (read only)

	Valid Values - This must be one of 0 or 1

An instance may have a clip may not be connected to an object that can produce image data. Use this to find out.

Any clip that is not optional will always be connected during a render action. However, during interface actions, even non optional clips may be unconnected.

	
kOfxImageClipPropContinuousSamples

	Clip and action argument property which indicates that the clip can be sampled continously.

	Type - int X 1

	Property Set - clip instance (read only), as an out argument to kOfxImageEffectActionGetClipPreferences action (read/write)

	Default - 0 as an out argument to the kOfxImageEffectActionGetClipPreferences action

	Valid Values - This must be one of…
	0 if the images can only be sampled at discreet times (eg: the clip is a sequence of frames),

	1 if the images can only be sampled continuously (eg: the clip is infact an animating roto spline and can be rendered anywhen).

If this is set to true, then the frame rate of a clip is effectively infinite, so to stop arithmetic errors the frame rate should then be set to 0.

	
kOfxImageClipPropFieldExtraction

	Controls how a plugin fetched fielded imagery from a clip.

	Type - string X 1

	Property Set - a clip descriptor (read/write)

	Default - kOfxImageFieldDoubled

	Valid Values - This must be one of
	kOfxImageFieldBoth - fetch a full frame interlaced image

	kOfxImageFieldSingle - fetch a single field, making a half height image

	kOfxImageFieldDoubled - fetch a single field, but doubling each line and so making a full height image

This controls how a plug-in wishes to fetch images from a fielded clip, so it can tune it behaviour when it renders fielded footage.

Note that if it fetches kOfxImageFieldSingle and the host stores images natively as both fields interlaced, it can return a single image by doubling rowbytes and tweaking the starting address of the image data. This saves on a buffer copy.

	
kOfxImageClipPropFieldOrder

	Which spatial field occurs temporally first in a frame.

	Type - string X 1

	Property Set - a clip instance (read only)

	Valid Values - This must be one of
	kOfxImageFieldNone - the material is unfielded

	kOfxImageFieldLower - the material is fielded, with image rows 0,2,4…. occuring first in a frame

	kOfxImageFieldUpper - the material is fielded, with image rows line 1,3,5…. occuring first in a frame

	
kOfxImageClipPropIsMask

	Indicates that a clip is intended to be used as a mask input.

	Type - int X 1

	Property Set - clip descriptor (read/write)

	Default - 0

	Valid Values - This must be one of 0 or 1

Set this property on any clip which will only ever have single channel alpha images fetched from it. Typically on an optional clip such as a junk matte in a keyer.

This property acts as a hint to hosts indicating that they could feed the effect from a rotoshape (or similar) rather than an ‘ordinary’ clip.

	
kOfxImageClipPropOptional

	Indicates if a clip is optional.

	Type - int X 1

	Property Set - clip descriptor (read/write)

	Default - 0

	Valid Values - This must be one of 0 or 1

	
kOfxImageClipPropUnmappedComponents

	Indicates the current ‘raw’ component type on a clip before any mapping by clip preferences.

	Type - string X 1

	Property Set - clip instance (read only),

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

	
kOfxImageClipPropUnmappedPixelDepth

	Indicates the type of each component in a clip before any mapping by clip preferences.

	Type - string X 1

	Property Set - clip instance (read only)

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

This is the actual value of the component depth, before any mapping by clip preferences.

	
kOfxImageEffectFrameVarying

	Indicates whether an effect will generate different images from frame to frame.

	Type - int X 1

	Property Set - out argument to kOfxImageEffectActionGetClipPreferences action (read/write).

	Default - 0

	Valid Values - This must be one of 0 or 1

This property indicates whether a plugin will generate a different image from frame to frame, even if no parameters or input image changes. For example a generater that creates random noise pixel at each frame.

	
kOfxImageEffectHostPropIsBackground

	Indicates if a host is a background render.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 if the host is a foreground host, it may open the effect in an interactive session (or not)

	1 if the host is a background ‘processing only’ host, and the effect will never be opened in an interactive session.

	
kOfxImageEffectInstancePropEffectDuration

	The duration of the effect.

	Type - double X 1

	Property Set - a plugin instance (read only)

This contains the duration of the plug-in effect, in frames.

	
kOfxImageEffectInstancePropSequentialRender

	Indicates whether a plugin needs sequential rendering, and a host support it.

	Type - int X 1

	Property Set - plugin descriptor (read/write) or plugin instance (read/write), and host descriptor (read only)

	Default - 0

	Valid Values -
	0 - for a plugin, indicates that a plugin does not need to be sequentially rendered to be correct, for a host, indicates that it cannot ever guarantee sequential rendering,

	1 - for a plugin, indicates that it needs to be sequentially rendered to be correct, for a host, indicates that it can always support sequential rendering of plugins that are sequentially rendered,

	2 - for a plugin, indicates that it is best to render sequentially, but will still produce correct results if not, for a host, indicates that it can sometimes render sequentially, and will have set kOfxImageEffectPropSequentialRenderStatus on the relevant actions

Some effects have temporal dependancies, some information from from the rendering of frame N-1 is needed to render frame N correctly. This property is set by an effect to indicate such a situation. Also, some effects are more efficient if they run sequentially, but can still render correct images even if they do not, eg: a complex particle system.

During an interactive session a host may attempt to render a frame out of sequence (for example when the user scrubs the current time), and the effect needs to deal with such a situation as best it can to provide feedback to the user.

However if a host caches output, any frame frame generated in random temporal order needs to be considered invalid and needs to be re-rendered when the host finally performs a first to last render of the output sequence.

In all cases, a host will set the kOfxImageEffectPropSequentialRenderStatus flag to indicate its sequential render status.

	
kOfxImageEffectPluginPropFieldRenderTwiceAlways

	Controls how a plugin renders fielded footage.

	Type - integer X 1

	Property Set - a plugin descriptor (read/write)

	Default - 1

	Valid Values - This must be one of
	0 - the plugin is to have its render function called twice, only if there is animation in any of its parameters

	1 - the plugin is to have its render function called twice always

	
kOfxImageEffectPluginPropGrouping

	Indicates the effect group for this plugin.

	Type - UTF8 string X 1

	Property Set - plugin descriptor (read/write)

	Default - “”

This is purely a user interface hint for the host so it can group related effects on any menus it may have.

	
kOfxImageEffectPluginPropHostFrameThreading

	Indicates whether a plugin lets the host perform per frame SMP threading.

	Type - int X 1

	Property Set - plugin descriptor (read/write)

	Default - 1

	Valid Values - This must be one of
	0 - which means that the plugin will perform any per frame SMP threading

	1 - which means the host can call an instance’s render function simultaneously at the same frame, but with different windows to render.

	
kOfxImageEffectPluginPropOverlayInteractV1

	Sets the entry for an effect’s overlay interaction.

	Type - pointer X 1

	Property Set - plugin descriptor (read/write)

	Default - NULL

	Valid Values - must point to an OfxPluginEntryPoint

The entry point pointed to must be one that handles custom interaction actions.

	
kOfxImageEffectPluginPropOverlayInteractV2

	Sets the entry for an effect’s overlay interaction. Unlike kOfxImageEffectPluginPropOverlayInteractV1, the overlay interact in the plug-in is expected to implement the kOfxInteractActionDraw using the OfxDrawSuiteV1.

	Type - pointer X 1

	Property Set - plugin descriptor (read/write)

	Default - NULL

	Valid Values - must point to an OfxPluginEntryPoint

The entry point pointed to must be one that handles custom interaction actions.

	
kOfxImageEffectPluginPropSingleInstance

	Indicates whether only one instance of a plugin can exist at the same time.

	Type - int X 1

	Property Set - plugin descriptor (read/write)

	Default - 0

	Valid Values - This must be one of
	0 - which means multiple instances can exist simultaneously,

	1 - which means only one instance can exist at any one time.

Some plugins, for whatever reason, may only be able to have a single instance in existance at any one time. This plugin property is used to indicate that.

	
kOfxImageEffectPluginRenderThreadSafety

	Indicates how many simultaneous renders the plugin can deal with.

	Type - string X 1

	Property Set - plugin descriptor (read/write)

	Default - kOfxImageEffectRenderInstanceSafe

	Valid Values - This must be one of
	kOfxImageEffectRenderUnsafe - indicating that only a single ‘render’ call can be made at any time amoung all instances,

	kOfxImageEffectRenderInstanceSafe - indicating that any instance can have a single ‘render’ call at any one time,

	kOfxImageEffectRenderFullySafe - indicating that any instance of a plugin can have multiple renders running simultaneously

	
kOfxImageEffectPropClipPreferencesSlaveParam

	Indicates the set of parameters on which a value change will trigger a change to clip preferences.

	Type - string X N

	Property Set - plugin descriptor (read/write)

	Default - none set

	Valid Values - the name of any described parameter

The plugin uses this to inform the host of the subset of parameters that affect the effect’s clip preferences. A value change in any one of these will trigger a call to the clip preferences action.

The plugin can be slaved to multiple parameters (setting index 0, then index 1 etc…)

	
kOfxImageEffectPropComponents

	Indicates the current component type in a clip or image (after any mapping)

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only)

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected, not valid for an image)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

Note that for a clip, this is the value set by the clip preferences action, not the raw ‘actual’ value of the clip.

	
kOfxImageEffectPropContext

	Indicates the context a plugin instance has been created for.

	Type - string X 1

	Property Set - image effect instance (read only)

	Valid Values - This must be one of
	kOfxImageEffectContextGenerator

	kOfxImageEffectContextFilter

	kOfxImageEffectContextTransition

	kOfxImageEffectContextPaint

	kOfxImageEffectContextGeneral

	kOfxImageEffectContextRetimer

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropFieldToRender

	Indicates which field is being rendered.

	Type - string X 1

	Property Set - a read only in argument property to kOfxImageEffectActionRender and kOfxImageEffectActionIsIdentity

	Valid Values - this must be one of
	kOfxImageFieldNone - there are no fields to deal with, all images are full frame

	kOfxImageFieldBoth - the imagery is fielded and both scan lines should be renderred

	kOfxImageFieldLower - the lower field is being rendered (lines 0,2,4…)

	kOfxImageFieldUpper - the upper field is being rendered (lines 1,3,5…)

	
kOfxImageEffectPropFrameRange

	The frame range over which a clip has images.

	Type - double X 2

	Property Set - clip instance (read only)

Dimension 0 is the first frame for which the clip can produce valid data.

Dimension 1 is the last frame for which the clip can produce valid data.

	
kOfxImageEffectPropFrameRate

	The frame rate of a clip or instance’s project.

	Type - double X 1

	Property Set - clip instance (read only), effect instance (read only) and kOfxImageEffectActionGetClipPreferences action out args property (read/write)

For an input clip this is the frame rate of the clip.

For an output clip, the frame rate mapped via pixel preferences.

For an instance, this is the frame rate of the project the effect is in.

For the outargs property in the kOfxImageEffectActionGetClipPreferences action, it is used to change the frame rate of the ouput clip.

	
kOfxImageEffectPropFrameStep

	The frame step used for a sequence of renders.

	Type - double X 1

	Property Set - an in argument for the kOfxImageEffectActionBeginSequenceRender action (read only)

	Valid Values - can be any positive value, but typically
	1 for frame based material

	0.5 for field based material

	
kOfxImageEffectPropInAnalysis

	Indicates whether an effect is performing an analysis pass. —ofxImageEffects.h.

	Type - int X 1

	Property Set - plugin instance (read/write)

	Default - to 0

	Valid Values - This must be one of 0 or 1

	
Deprecated:

	
	This feature has been deprecated - officially commented out v1.4.

	
kOfxImageEffectPropInteractiveRenderStatus

	Property that indicates if a plugin is being rendered in response to user interaction.

	Type - int X 1

	Property Set - read only property on the inArgs of the following actions…
	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values -
	0 - the host is rendering the instance due to some reason other than an interactive tweak on a UI,

	1 - the instance is being rendered because a user is modifying parameters in an interactive session.

This property is set to 1 on all render calls that have been triggered because a user is actively modifying an effect (or up stream effect) in an interactive session. This typically means that the effect is not being rendered as a part of a sequence, but as a single frame.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenGLEnabled

	Indicates that an image effect SHOULD use OpenGL acceleration in the current action.

When a plugin and host have established they can both use OpenGL renders then when this property has been set the host expects the plugin to render its result into the buffer it has setup before calling the render. The plugin can then also safely use the ‘OfxImageEffectOpenGLRenderSuite’

	Type - int X 1

	Property Set - inArgs property set of the following actions…
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values
	0 indicates that the effect cannot use the OpenGL suite

	1 indicates that the effect should render into the texture, and may use the OpenGL suite functions.

v1.4: kOfxImageEffectPropOpenGLEnabled should probably be checked in Instance Changed prior to try to read image via clipLoadTexture

Note

Once this property is set, the host and plug-in have agreed to use OpenGL, so the effect SHOULD access all its images through the OpenGL suite.

	
kOfxImageEffectPropOpenGLRenderSupported

	Indicates whether a host or plugin can support OpenGL accelerated rendering.

	Type - C string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only) - plugin instance change (read/write)

	Default - “false” for a plugin

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support OpenGL accelerated rendering

	”true” - which means a host or plugin can support OpenGL accelerated rendering, in the case of plug-ins this also means that it is capable of CPU based rendering in the absence of a GPU

	”needed” - only for plug-ins, this means that an effect has to have OpenGL support, without which it cannot work.

V1.4: It is now expected from host reporting v1.4 that the plugin can during instance change switch from true to false and false to true.

	
kOfxImageEffectPropOpenGLTextureIndex

	Indicates the texture index of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by ` OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLuint and used as the texture index when
 performing OpenGL texture operations.

 The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropOpenGLTextureTarget

	Indicates the texture target enumerator of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLenum and used as the texture target when performing OpenGL texture operations.

The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropPixelDepth

	Indicates the type of each component in a clip or image (after any mapping)

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only)

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

Note that for a clip, this is the value set by the clip preferences action, not the raw ‘actual’ value of the clip.

	
kOfxImageEffectPropPluginHandle

	The plugin handle passed to the initial ‘describe’ action.

	Type - pointer X 1

	Property Set - plugin instance, (read only)

This value will be the same for all instances of a plugin.

	
kOfxImageEffectPropPreMultiplication

	Indicates the premultiplication state of a clip or image.

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only), out args property in the kOfxImageEffectActionGetClipPreferences action (read/write)

	Valid Values - This must be one of
	kOfxImageOpaque - the image is opaque and so has no premultiplication state

	kOfxImagePreMultiplied - the image is premultiplied by its alpha

	kOfxImageUnPreMultiplied - the image is unpremultiplied

See the documentation on clip preferences for more details on how this is used with the kOfxImageEffectActionGetClipPreferences action.

	
kOfxImageEffectPropProjectExtent

	The extent of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The extent is the size of the ‘output’ for the current project. See NormalisedCoordinateSystem for more infomation on the project extent.

The extent is in canonical coordinates and only returns the top right position, as the extent is always rooted at 0,0.

For example a PAL SD project would have an extent of 768, 576.

	
kOfxImageEffectPropProjectOffset

	The offset of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The offset is related to the kOfxImageEffectPropProjectSize and is the offset from the origin of the project ‘subwindow’.

For example for a PAL SD project that is in letterbox form, the project offset is the offset to the bottom left hand corner of the letter box.

The project offset is in canonical coordinates.

See NormalisedCoordinateSystem for more infomation on the project extent.

	
kOfxImageEffectPropProjectPixelAspectRatio

	The pixel aspect ratio of the current project.

	Type - double X 1

	Property Set - a plugin instance (read only)

	
kOfxImageEffectPropProjectSize

	The size of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The size of a project is a sub set of the kOfxImageEffectPropProjectExtent. For example a project may be a PAL SD project, but only be a letter-box within that. The project size is the size of this sub window.

The project size is in canonical coordinates.

See NormalisedCoordinateSystem for more infomation on the project extent.

	
kOfxImageEffectPropRegionOfDefinition

	Used to indicate the region of definition of a plug-in.

	Type - double X 4

	Property Set - a read/write out argument property to the kOfxImageEffectActionGetRegionOfDefinition action

	Default - see kOfxImageEffectActionGetRegionOfDefinition

The order of the values is x1, y1, x2, y2.

This will be in CanonicalCoordinates

	
kOfxImageEffectPropRegionOfInterest

	The value of a region of interest.

	Type - double X 4

	Property Set - a read only in argument property to the kOfxImageEffectActionGetRegionsOfInterest action

A host passes this value into the region of interest action to specify the region it is interested in rendering.

The order of the values is x1, y1, x2, y2.

This will be in CanonicalCoordinates.

	
kOfxImageEffectPropRenderQualityDraft

	Indicates whether an effect can take quality shortcuts to improve speed.

	Type - int X 1

	Property Set - render calls, host (read-only)

	Default - 0 - 0: Best Quality (1: Draft)

	Valid Values - This must be one of 0 or 1

This property indicates that the host provides the plug-in the option to render in Draft/Preview mode. This is useful for applications that must support fast scrubbing. These allow a plug-in to take short-cuts for improved performance when the situation allows and it makes sense, for example to generate thumbnails with effects applied. For example switch to a cheaper interpolation type or rendering mode. A plugin should expect frames rendered in this manner that will not be stucked in host cache unless the cache is only used in the same draft situations. If an host does not support that property a value of 0 is assumed. Also note that some hosts do implement kOfxImageEffectPropRenderScale - these two properties can be used independently.

	
kOfxImageEffectPropRenderScale

	The proxy render scale currently being applied.

	Type - double X 2

	Property Set - an image instance (read only) and as read only an in argument on the following actions,
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	kOfxImageEffectActionIsIdentity

	kOfxImageEffectActionGetRegionOfDefinition

	kOfxImageEffectActionGetRegionsOfInterest

	kOfxActionInstanceChanged

	kOfxInteractActionDraw

	kOfxInteractActionPenMotion

	kOfxInteractActionPenDown

	kOfxInteractActionPenUp

	kOfxInteractActionKeyDown

	kOfxInteractActionKeyUp

	kOfxInteractActionKeyRepeat

	kOfxInteractActionGainFocus

	kOfxInteractActionLoseFocus

This should be applied to any spatial parameters to position them correctly. Not that the ‘x’ value does not include any pixel aspect ratios.

	
kOfxImageEffectPropRenderWindow

	The region to be rendered.

	Type - integer X 4

	Property Set - a read only in argument property to the kOfxImageEffectActionRender and kOfxImageEffectActionIsIdentity actions

The order of the values is x1, y1, x2, y2.

This will be in PixelCoordinates

	
kOfxImageEffectPropSequentialRenderStatus

	Property on all the render action that indicate the current sequential render status of a host.

	Type - int X 1

	Property Set - read only property on the inArgs of the following actions…
	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values -
	0 - the host is not currently sequentially rendering,

	1 - the host is currentely rendering in a way so that it guarantees sequential rendering.

This property is set to indicate whether the effect is currently being rendered in frame order on a single effect instance. See kOfxImageEffectInstancePropSequentialRender for more details on sequential rendering.

	
kOfxImageEffectPropSetableFielding

	Indicates whether the host will let a plugin set the fielding of the output clip.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - in which case the plugin may not change the fielding of the output clip,

	1 - which means a plugin is able to change the output clip’s fielding in the kOfxImageEffectActionGetClipPreferences action.

See ImageEffectClipPreferences.

	
kOfxImageEffectPropSetableFrameRate

	Indicates whether the host will let a plugin set the frame rate of the output clip.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - in which case the plugin may not change the frame rate of the output clip,

	1 - which means a plugin is able to change the output clip’s frame rate in the kOfxImageEffectActionGetClipPreferences action.

See ImageEffectClipPreferences.

If a clip can be continously sampled, the frame rate will be set to 0.

	
kOfxImageEffectPropSupportedComponents

	Indicates the components supported by a clip or host,.

	Type - string X N

	Property Set - host descriptor (read only), clip descriptor (read/write)

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

This list of strings indicate what component types are supported by a host or are expected as input to a clip.

The default for a clip descriptor is to have none set, the plugin must define at least one in its define function

	
kOfxImageEffectPropSupportedContexts

	Indicates to the host the contexts a plugin can be used in.

	Type - string X N

	Property Set - image effect descriptor passed to kOfxActionDescribe (read/write)

	Default - this has no defaults, it must be set

	Valid Values - This must be one of
	kOfxImageEffectContextGenerator

	kOfxImageEffectContextFilter

	kOfxImageEffectContextTransition

	kOfxImageEffectContextPaint

	kOfxImageEffectContextGeneral

	kOfxImageEffectContextRetimer

	
kOfxImageEffectPropSupportedPixelDepths

	Indicates the bit depths support by a plug-in or host.

	Type - string X N

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - plugin descriptor none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

The default for a plugin is to have none set, the plugin must define at least one in its describe action.

	
kOfxImageEffectPropSupportsMultiResolution

	Indicates whether a plugin or host support multiple resolution images.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - 1 for plugins

	Valid Values - This must be one of
	0 - the plugin or host does not support multiple resolutions

	1 - the plugin or host does support multiple resolutions

Multiple resolution images mean…
	input and output images can be of any size

	input and output images can be offset from the origin

	
kOfxImageEffectPropSupportsMultipleClipDepths

	Indicates whether a host or plugin can support clips of differing component depths going into/out of an effect.

	Type - int X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - 0 for a plugin

	Valid Values - This must be one of
	0 - in which case the host or plugin does not support clips of multiple pixel depths,

	1 - which means a host or plugin is able to to deal with clips of multiple pixel depths,

If a host indicates that it can support multiple pixels depths, then it will allow the plugin to explicitly set the output clip’s pixel depth in the kOfxImageEffectActionGetClipPreferences action. See ImageEffectClipPreferences.

	
kOfxImageEffectPropSupportsMultipleClipPARs

	Indicates whether a host or plugin can support clips of differing pixel aspect ratios going into/out of an effect.

	Type - int X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - 0 for a plugin

	Valid Values - This must be one of
	0 - in which case the host or plugin does not support clips of multiple pixel aspect ratios

	1 - which means a host or plugin is able to to deal with clips of multiple pixel aspect ratios

If a host indicates that it can support multiple pixel aspect ratios, then it will allow the plugin to explicitly set the output clip’s aspect ratio in the kOfxImageEffectActionGetClipPreferences action. See ImageEffectClipPreferences.

	
kOfxImageEffectPropSupportsOverlays

	Indicates whether a host support image effect ImageEffectOverlays.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - the host won’t allow a plugin to draw a GUI over the output image,

	1 - the host will allow a plugin to draw a GUI over the output image.

	
kOfxImageEffectPropSupportsTiles

	Indicates whether a clip, plugin or host supports tiled images.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write), clip descriptor (read/write), instance (read/write)

	Default - to 1 for a plugin and clip

	Valid Values - This must be one of 0 or 1

Tiled images mean that input or output images can contain pixel data that is only a subset of their full RoD.

If a clip or plugin does not support tiled images, then the host should supply full RoD images to the effect whenever it fetches one.

V1.4: It is now possible (defined) to change OfxImageEffectPropSupportsTiles in Instance Changed

	
kOfxImageEffectPropTemporalClipAccess

	Indicates support for random temporal access to images in a clip.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write), clip descriptor (read/write)

	Default - to 0 for a plugin and clip

	Valid Values - This must be one of 0 or 1

On a host, it indicates whether the host supports temporal access to images.

On a plugin, indicates if the plugin needs temporal access to images.

On a clip, it indicates that the clip needs temporal access to images.

	
kOfxImageEffectPropUnmappedFrameRange

	The unmaped frame range over which an output clip has images.

	Type - double X 2

	Property Set - clip instance (read only)

Dimension 0 is the first frame for which the clip can produce valid data.

Dimension 1 is the last frame for which the clip can produce valid data.

If a plugin changes the output frame rate in the pixel preferences action, it will affect the frame range of the output clip, this property allows a plugin to get to the original value.

	
kOfxImageEffectPropUnmappedFrameRate

	Indicates the original unmapped frame rate (frames/second) of a clip.

	Type - double X 1

	Property Set - clip instance (read only),

If a plugin changes the output frame rate in the pixel preferences action, this property allows a plugin to get to the original value.

	
kOfxImagePropBounds

	The bounds of an image’s pixels.

	Type - integer X 4

	Property Set - an image instance (read only)

The bounds, in PixelCoordinates, are of the addressable pixels in an image’s data pointer.

The order of the values is x1, y1, x2, y2.

X values are x1 <= X < x2 Y values are y1 <= Y < y2

For less than full frame images, the pixel bounds will be contained by the kOfxImagePropRegionOfDefinition bounds.

	
kOfxImagePropData

	The pixel data pointer of an image.

	Type - pointer X 1

	Property Set - an image instance (read only)

This property contains one of:
	a pointer to memory that is the lower left hand corner of an image

	a pointer to Cuda memory, if the Render action arguments includes kOfxImageEffectPropCudaEnabled=1

	an id<MTLBuffer>, if the Render action arguments includes kOfxImageEffectPropMetalEnabled=1

	a cl_mem, if the Render action arguments includes kOfxImageEffectPropOpenCLEnabled=1

See kOfxImageEffectPropCudaEnabled, kOfxImageEffectPropMetalEnabled and kOfxImageEffectPropOpenCLEnabled

	
kOfxImagePropField

	Which fields are present in the image.

	Type - string X 1

	Property Set - an image instance (read only)

	Valid Values - This must be one of
	kOfxImageFieldNone - the image is an unfielded frame

	kOfxImageFieldBoth - the image is fielded and contains both interlaced fields

	kOfxImageFieldLower - the image is fielded and contains a single field, being the lower field (rows 0,2,4…)

	kOfxImageFieldUpper - the image is fielded and contains a single field, being the upper field (rows 1,3,5…)

	
kOfxImagePropPixelAspectRatio

	The pixel aspect ratio of a clip or image.

	Type - double X 1

	Property Set - clip instance (read only), image instance (read only) and kOfxImageEffectActionGetClipPreferences action out args property (read/write)

	
kOfxImagePropRegionOfDefinition

	The full region of definition of an image.

	Type - integer X 4

	Property Set - an image instance (read only)

An image’s region of definition, in PixelCoordinates, is the full frame area of the image plane that the image covers.

The order of the values is x1, y1, x2, y2.

X values are x1 <= X < x2 Y values are y1 <= Y < y2

The kOfxImagePropBounds property contains the actuall addressable pixels in an image, which may be less than its full region of definition.

	
kOfxImagePropRowBytes

	The number of bytes in a row of an image.

	Type - integer X 1

	Property Set - an image instance (read only)

For various alignment reasons, a row of pixels may need to be padded at the end with several bytes before the next row starts in memory.

This property indicates the number of bytes in a row of pixels. This will be at least sizeof(PIXEL) * (bounds.x2-bounds.x1). Where bounds is fetched from the kOfxImagePropBounds property.

Note that (for CPU images only, not Cuda/Metal/OpenCL buffers, nor textures accessed via the OpenGL Render Suite) row bytes can be negative, which allows hosts with a native top down row order to pass image into OFX without having to repack pixels.

	
kOfxImagePropUniqueIdentifier

	Uniquely labels an image.

	Type - ASCII string X 1

	Property Set - image instance (read only)

This is host set and allows a plug-in to differentiate between images. This is especially useful if a plugin caches analysed information about the image (for example motion vectors). The plugin can label the cached information with this identifier. If a user connects a different clip to the analysed input, or the image has changed in some way then the plugin can detect this via an identifier change and re-evaluate the cached information.

	
kOfxInteractPropBackgroundColour

	The background colour of the application behind an interact instance.

	Type - double X 3

	Property Set - read only on the interact instance and in argument to the kOfxInteractActionDraw action

	Valid Values - from 0 to 1

The components are in the order red, green then blue.

	
kOfxInteractPropBitDepth

	Indicates whether the dits per component in the interact’s openGL frame buffer.

	Type - int X 1

	Property Set - interact instance and descriptor (read only)

	
kOfxInteractPropDrawContext

	The Draw Context handle.

	Type - pointer X 1

	Property Set - read only property on the inArgs of the following actions…

	kOfxInteractActionDraw

	
kOfxInteractPropHasAlpha

	Indicates whether the interact’s frame buffer has an alpha component or not.

	Type - int X 1

	Property Set - interact instance and descriptor (read only)

	Valid Values - This must be one of
	0 indicates no alpha component

	1 indicates an alpha component

	
kOfxInteractPropPenPosition

	The position of the pen in an interact.

	Type - double X 2

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

This value passes the postion of the pen into an interact. This is in the interact’s canonical coordinates.

	
kOfxInteractPropPenPressure

	The pressure of the pen in an interact.

	Type - double X 1

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

	Valid Values - from 0 (no pressure) to 1 (maximum pressure)

This is used to indicate the status of the ‘pen’ in an interact. If a pen has only two states (eg: a mouse button), these should map to 0.0 and 1.0.

	
kOfxInteractPropPenViewportPosition

	The position of the pen in an interact in viewport coordinates.

	Type - int X 2

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

This value passes the postion of the pen into an interact. This is in the interact’s openGL viewport coordinates, with 0,0 being at the bottom left.

	
kOfxInteractPropPixelScale

	The size of a real screen pixel under the interact’s canonical projection.

	Type - double X 2

	Property Set - interact instance and actions (read only)

	
kOfxInteractPropSlaveToParam

	The set of parameters on which a value change will trigger a redraw for an interact.

	Type - string X N

	Property Set - interact instance property (read/write)

	Default - no values set

	Valid Values - the name of any parameter associated with this interact.

If the interact is representing the state of some set of OFX parameters, then is will need to be redrawn if any of those parameters’ values change. This multi-dimensional property links such parameters to the interact.

The interact can be slaved to multiple parameters (setting index 0, then index 1 etc…)

	
kOfxInteractPropSuggestedColour

	The suggested colour to draw a widget in an interact, typically for overlays.

	Type - double X 3

	Property Set - read only on the interact instance

	Default - 1.0

	Valid Values - greater than or equal to 0.0

Some applications allow the user to specify colours of any overlay via a colour picker, this property represents the value of that colour. Plugins are at liberty to use this or not when they draw an overlay.

If a host does not support such a colour, it should return kOfxStatReplyDefault

	
kOfxInteractPropViewportSize

	The size of an interact’s openGL viewport — ofxInteract.h.

	Type - int X 2

	Property Set - read only property on the interact instance and in argument to all the interact actions.

	
Deprecated:

	
	V1.3: This property is the redundant and its use will be deprecated in future releases. V1.4: Removed

	
kOfxOpenGLPropPixelDepth

	Indicates the bit depths supported by a plug-in during OpenGL renders.

This is analogous to kOfxImageEffectPropSupportedPixelDepths. When a plug-in sets this property, the host will try to provide buffers/textures in one of the supported formats. Additionally, the target buffers where the plug-in renders to will be set to one of the supported formats.

Unlike kOfxImageEffectPropSupportedPixelDepths, this property is optional. Shader-based effects might not really care about any format specifics when using OpenGL textures, so they can leave this unset and allow the host the decide the format.

	Type - string X N

	Property Set - plugin descriptor (read only)

	Default - none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

	
kOfxParamHostPropMaxPages

	Indicates the maximum number of parameter pages.

	Type - int X 1

	Property Set - host descriptor (read only)

If there is no limit to the number of pages on a host, set this to -1.

Hosts that do not support paged parameter layout should set this to zero.

	
kOfxParamHostPropMaxParameters

	Indicates the maximum numbers of parameters available on the host.

	Type - int X 1

	Property Set - host descriptor (read only)

If set to -1 it implies unlimited number of parameters.

	
kOfxParamHostPropPageRowColumnCount

	This indicates the number of parameter rows and coloumns on a page.

	Type - int X 2

	Property Set - host descriptor (read only)

If the host has supports paged parameter layout, used dimension 0 as the number of columns per page and dimension 1 as the number of rows per page.

	
kOfxParamHostPropSupportsBooleanAnimation

	Indicates if the host supports animation of boolean params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsChoiceAnimation

	Indicates if the host supports animation of choice params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsCustomAnimation

	Indicates if the host supports animation of custom parameters.

	Type - int X 1

	Property Set - host descriptor (read only)

	Value Values - 0 or 1

	
kOfxParamHostPropSupportsCustomInteract

	Indicates if the host supports custom interacts for parameters.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

Currently custom interacts for parameters can only be drawn using OpenGL. APIs will be added later to support using the new Draw Suite.

	
kOfxParamHostPropSupportsParametricAnimation

	Property on the host to indicate support for parametric parameter animation.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values
	0 indicating the host does not support animation of parmetric params,

	1 indicating the host does support animation of parmetric params,

	
kOfxParamHostPropSupportsStringAnimation

	Indicates if the host supports animation of string params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamPropAnimates

	Flags whether a parameter can animate.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

A plug-in uses this property to indicate if a parameter is able to animate.

	
kOfxParamPropCacheInvalidation

	Specifies how modifying the value of a param will affect any output of an effect over time.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - kOfxParamInvalidateValueChange

	Valid Values - This must be one of
	kOfxParamInvalidateValueChange

	kOfxParamInvalidateValueChangeToEnd

	kOfxParamInvalidateAll

Imagine an effect with an animating parameter in a host that caches rendered output. Think of the what happens when you add a new key frame. -If the parameter represents something like an absolute position, the cache will only need to be invalidated for the range of frames that keyframe affects.
	If the parameter represents something like a speed which is integrated, the cache will be invalidated from the keyframe until the end of the clip.

	There are potentially other situations where the entire cache will need to be invalidated (though I can’t think of one off the top of my head).

	
kOfxParamPropCanUndo

	Flags whether changes to a parameter should be put on the undo/redo stack.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

	
kOfxParamPropChoiceOption

	Set an option in a choice parameter.

	Type - UTF8 C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the property is empty with no options set.

This property contains the set of options that will be presented to a user from a choice parameter. See ParametersChoice for more details.

	
kOfxParamPropCustomInterpCallbackV1

	A pointer to a custom parameter’s interpolation function.

	Type - pointer X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - NULL

	Valid Values - must point to a OfxCustomParamInterpFuncV1

It is an error not to set this property in a custom parameter during a plugin’s define call if the custom parameter declares itself to be an animating parameter.

	
kOfxParamPropCustomValue

	Used by interpolating custom parameters to get and set interpolated values.

	Type - C string X 1 or 2

This property is on the inArgs property and outArgs property of a OfxCustomParamInterpFuncV1 and in both cases contains the encoded value of a custom parameter. As an inArgs property it will have two values, being the two keyframes to interpolate. As an outArgs property it will have a single value and the plugin should fill this with the encoded interpolated value of the parameter.

	
kOfxParamPropDataPtr

	A private data pointer that the plug-in can store its own data behind.

	Type - pointer X 1

	Property Set - plugin parameter instance (read/write),

	Default - NULL

This data pointer is unique to each parameter instance, so two instances of the same parameter do not share the same data pointer. Use it to hang any needed private data structures.

	
kOfxParamPropDefault

	The default value of a parameter.

	Type - The type is dependant on the parameter type as is the dimension.

	Property Set - plugin parameter descriptor (read/write) and instance (read/write only),

	Default - 0 cast to the relevant type (or “” for strings and custom parameters)

The exact type and dimension is dependant on the type of the parameter. These are….
	kOfxParamTypeInteger - integer property of one dimension

	kOfxParamTypeDouble - double property of one dimension

	kOfxParamTypeBoolean - integer property of one dimension

	kOfxParamTypeChoice - integer property of one dimension

	kOfxParamTypeRGBA - double property of four dimensions

	kOfxParamTypeRGB - double property of three dimensions

	kOfxParamTypeDouble2D - double property of two dimensions

	kOfxParamTypeInteger2D - integer property of two dimensions

	kOfxParamTypeDouble3D - double property of three dimensions

	kOfxParamTypeInteger3D - integer property of three dimensions

	kOfxParamTypeString - string property of one dimension

	kOfxParamTypeCustom - string property of one dimension

	kOfxParamTypeGroup - does not have this property

	kOfxParamTypePage - does not have this property

	kOfxParamTypePushButton - does not have this property

	
kOfxParamPropDefaultCoordinateSystem

	Describes in which coordinate system a spatial double parameter’s default value is specified.

	Type - C string X 1

	Default - kOfxParamCoordinatesCanonical

	Property Set - Non normalised spatial double parameters, ie: any double param who’s kOfxParamPropDoubleType is set to one of…
	kOfxParamDoubleTypeX

	kOfxParamDoubleTypeXAbsolute

	kOfxParamDoubleTypeY

	kOfxParamDoubleTypeYAbsolute

	kOfxParamDoubleTypeXY

	kOfxParamDoubleTypeXYAbsolute

	Valid Values - This must be one of
	kOfxParamCoordinatesCanonical - the default is in canonical coords

	kOfxParamCoordinatesNormalised - the default is in normalised coordinates

This allows a spatial param to specify what its default is, so by saying normalised and “0.5” it would be in the ‘middle’, by saying canonical and 100 it would be at value 100 independent of the size of the image being applied to.

	
kOfxParamPropDigits

	How many digits after a decimal point to display for a double param in a GUI.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 2

	Valid Values - any greater than 0.

This applies to double params of any dimension.

	
kOfxParamPropDimensionLabel

	Label for individual dimensions on a multidimensional numeric parameter.

	Type - UTF8 C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - “x”, “y” and “z”

	Valid Values - any

Use this on 2D and 3D double and integer parameters to change the label on an individual dimension in any GUI for that parameter.

	
kOfxParamPropDisplayMax

	The maximum value for a numeric parameter on any user interface.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the largest possible value corresponding to the parameter type (eg: INT_MAX for an integer, DBL_MAX for a double parameter)

If a user interface represents a parameter with a slider or similar, this should be the maximum bound on that slider.

	
kOfxParamPropDisplayMin

	The minimum value for a numeric parameter on any user interface.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the smallest possible value corresponding to the parameter type (eg: INT_MIN for an integer, -DBL_MAX for a double parameter)

If a user interface represents a parameter with a slider or similar, this should be the minumum bound on that slider.

	
kOfxParamPropDoubleType

	Describes how the double parameter should be interpreted by a host.

	Type - C string X 1

	Default - kOfxParamDoubleTypePlain

	Property Set - 1D, 2D and 3D float plugin parameter descriptor (read/write) and instance (read only),

	Valid Values -This must be one of
	kOfxParamDoubleTypePlain - parameter has no special interpretation,

	kOfxParamDoubleTypeAngle - parameter is to be interpretted as an angle,

	kOfxParamDoubleTypeScale - parameter is to be interpretted as a scale factor,

	kOfxParamDoubleTypeTime - parameter represents a time value (1D only),

	kOfxParamDoubleTypeAbsoluteTime - parameter represents an absolute time value (1D only),

	kOfxParamDoubleTypeX - size wrt to the project’s X dimension (1D only), in canonical coordinates,

	kOfxParamDoubleTypeXAbsolute - absolute position on the X axis (1D only), in canonical coordinates,

	kOfxParamDoubleTypeY - size wrt to the project’s Y dimension(1D only), in canonical coordinates,

	kOfxParamDoubleTypeYAbsolute - absolute position on the Y axis (1D only), in canonical coordinates,

	kOfxParamDoubleTypeXY - size in 2D (2D only), in canonical coordinates,

	kOfxParamDoubleTypeXYAbsolute - an absolute position on the image plane, in canonical coordinates.

Double parameters can be interpreted in several different ways, this property tells the host how to do so and thus gives hints as to the interface of the parameter.

	
kOfxParamPropEnabled

	Used to enable a parameter in the user interface.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 1

	Valid Values - 0 or 1

When set to 0 a user should not be able to modify the value of the parameter. Note that the plug-in itself can still change the value of a disabled parameter.

	
kOfxParamPropEvaluateOnChange

	Flags whether changing a parameter’s value forces an evalution (ie: render),.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write only)

	Default - 1

	Valid Values - 0 or 1

This is used to indicate if the value of a parameter has any affect on an effect’s output, eg: the parameter may be purely for GUI purposes, and so changing its value should not trigger a re-render.

	
kOfxParamPropGroupOpen

	Whether the initial state of a group is open or closed in a hierarchical layout.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

This is a property on parameters of type kOfxParamTypeGroup, and tells the group whether it should be open or closed by default.

	
kOfxParamPropHasHostOverlayHandle

	A flag to indicate if there is a host overlay UI handle for the given parameter.

	Type - int x 1

	Property Set - plugin parameter descriptor (read only)

	Valid Values - 0 or 1

If set to 1, then the host is flagging that there is some sort of native user overlay interface handle available for the given parameter.

	
kOfxParamPropHint

	A hint to the user as to how the parameter is to be used.

	Type - UTF8 C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - “”

	
kOfxParamPropIncrement

	The granularity of a slider used to represent a numeric parameter.

	Type - double X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 1

	Valid Values - any greater than 0.

This value is always in canonical coordinates for double parameters that are normalised.

	
kOfxParamPropInteractMinimumSize

	The minimum size of a parameter’s custom interface, in screen pixels.

	Type - double x 2

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 10,10

	Valid Values - greater than (0, 0)

Any custom interface will not be less than this size.

	
kOfxParamPropInteractPreferedSize

	The preferred size of a parameter’s custom interface.

	Type - int x 2

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 10,10

	Valid Values - greater than (0, 0)

A host should attempt to set a parameter’s custom interface on a parameter to be this size if possible, otherwise it will be of kOfxParamPropInteractSizeAspect aspect but larger than kOfxParamPropInteractMinimumSize.

	
kOfxParamPropInteractSize

	The size of a parameter instance’s custom interface in screen pixels.

	Type - double x 2

	Property Set - plugin parameter instance (read only)

This is set by a host to indicate the current size of a custom interface if the plug-in has one. If not this is set to (0,0).

	
kOfxParamPropInteractSizeAspect

	The preferred aspect ratio of a parameter’s custom interface.

	Type - double x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1.0

	Valid Values - greater than or equal to 0.0

If set to anything other than 0.0, the custom interface for this parameter will be of a size with this aspect ratio (x size/y size).

	
kOfxParamPropInteractV1

	Overrides the parameter’s standard user interface with the given interact.

	Type - pointer X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - NULL

	Valid Values - must point to a OfxPluginEntryPoint

If set, the parameter’s normal interface is replaced completely by the interact gui.

Currently custom interacts for parameters can only be drawn using OpenGL. APIs will be added later to support using the new Draw Suite.

	
kOfxParamPropInterpolationAmount

	Property used by OfxCustomParamInterpFuncV1 to indicate the amount of interpolation to perform.

	Type - double X 1

	Property Set - inArgs parameter of a OfxCustomParamInterpFuncV1 (read only)

	Valid Values - from 0 to 1

This property indicates how far between the two kOfxParamPropCustomValue keys to interpolate.

	
kOfxParamPropInterpolationTime

	Used by interpolating custom parameters to indicate the time a key occurs at.

	Type - double X 2

	Property Set - inArgs parameter of a OfxCustomParamInterpFuncV1 (read only)

The two values indicate the absolute times the surrounding keyframes occur at. The keyframes are encoded in a kOfxParamPropCustomValue property.

	
kOfxParamPropIsAnimating

	Flags whether a parameter is currently animating.

	Type - int x 1

	Property Set - plugin parameter instance (read only)

	Valid Values - 0 or 1

Set by a host on a parameter instance to indicate if the parameter has a non-constant value set on it. This can be as a consequence of animation or of scripting modifying the value, or of a parameter being connected to an expression in the host.

	
kOfxParamPropIsAutoKeying

	Will a value change on the parameter add automatic keyframes.

	Type - int X 1

	Property Set - plugin parameter instance (read only),

	Valid Values - 0 or 1

This is set by the host simply to indicate the state of the property.

	
kOfxParamPropMax

	The maximum value for a numeric parameter.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the largest possible value corresponding to the parameter type (eg: INT_MAX for an integer, DBL_MAX for a double parameter)

Setting this will also reset :;kOfxParamPropDisplayMax.

	
kOfxParamPropMin

	The minimum value for a numeric parameter.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the smallest possible value corresponding to the parameter type (eg: INT_MIN for an integer, -DBL_MAX for a double parameter)

Setting this will also reset kOfxParamPropDisplayMin.

	
kOfxParamPropPageChild

	The names of the parameters included in a page parameter.

	Type - C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - the names of any parameter that is not a group or page, as well as kOfxParamPageSkipRow and kOfxParamPageSkipColumn

This is a property on parameters of type kOfxParamTypePage, and tells the page what parameters it contains. The parameters are added to the page from the top left, filling in columns as we go. The two pseudo param names kOfxParamPageSkipRow and kOfxParamPageSkipColumn are used to control layout.

Note parameters can appear in more than one page.

	
kOfxParamPropParametricDimension

	The dimension of a parametric param.

	Type - int X 1

	Property Set - parametric param descriptor (read/write) and instance (read only)

	default - 1

	Value Values - greater than 0

This indicates the dimension of the parametric param.

	
kOfxParamPropParametricInteractBackground

	Interact entry point to draw the background of a parametric parameter.

	Type - pointer X 1

	Property Set - plug-in parametric parameter descriptor (read/write) and instance (read only),

	Default - NULL, which implies the host should draw its default background.

Defines a pointer to an interact which will be used to draw the background of a parametric parameter’s user interface. None of the pen or keyboard actions can ever be called on the interact.

The openGL transform will be set so that it is an orthographic transform that maps directly to the ‘parametric’ space, so that ‘x’ represents the parametric position and ‘y’ represents the evaluated value.

	
kOfxParamPropParametricRange

	Property to indicate the min and max range of the parametric input value.

	Type - double X 2

	Property Set - parameter descriptor (read/write only), and instance (read only)

	Default Value - (0, 1)

	Valid Values - any pair of numbers so that the first is less than the second.

This controls the min and max values that the parameter will be evaluated at.

	
kOfxParamPropParametricUIColour

	The colour of parametric param curve interface in any UI.

	Type - double X N

	Property Set - parametric param descriptor (read/write) and instance (read only)

	default - unset,

	Value Values - three values for each dimension (see kOfxParamPropParametricDimension) being interpretted as R, G and B of the colour for each curve drawn in the UI.

This sets the colour of a parametric param curve drawn a host user interface. A colour triple is needed for each dimension of the oparametric param.

If not set, the host should generally draw these in white.

	
kOfxParamPropParent

	The name of a parameter’s parent group.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - “”, which implies the “root” of the hierarchy,

	Valid Values - the name of a parameter with type of kOfxParamTypeGroup

Hosts that have hierarchical layouts of their params use this to recursively group parameter.

By default parameters are added in order of declaration to the ‘root’ hierarchy. This property is used to reparent params to a predefined param of type kOfxParamTypeGroup.

	
kOfxParamPropPersistant

	Flags whether the value of a parameter should persist.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

This is used to tell the host whether the value of the parameter is important and should be save in any description of the plug-in.

	
kOfxParamPropPluginMayWrite

	Flags whether the plugin will attempt to set the value of a parameter in some callback or analysis pass.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 0

	Valid Values - 0 or 1

This is used to tell the host whether the plug-in is going to attempt to set the value of the parameter.

	
Deprecated:

	
	v1.4: deprecated - to be removed in 1.5

	
kOfxParamPropScriptName

	The value to be used as the id of the parameter in a host scripting language.

	Type - ASCII C string X 1,

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - the unique name the parameter was created with.

	Valid Values - ASCII string unique to all parameters in the plug-in.

Many hosts have a scripting language that they use to set values of parameters and more. If so, this is the name of a parameter in such scripts.

	
kOfxParamPropSecret

	Flags whether a parameter should be exposed to a user,.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write)

	Default - 0

	Valid Values - 0 or 1

If secret, a parameter is not exposed to a user in any interface, but should otherwise behave as a normal parameter.

Secret params are typically used to hide important state detail that would otherwise be unintelligible to a user, for example the result of a statical analysis that might need many parameters to store.

	
kOfxParamPropShowTimeMarker

	Enables the display of a time marker on the host’s time line to indicate the value of the absolute time param.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write)

	Default - 0

	Valid Values - 0 or 1

If a double parameter is has kOfxParamPropDoubleType set to kOfxParamDoubleTypeAbsoluteTime, then this indicates whether any marker should be made visible on the host’s time line.

	
kOfxParamPropStringMode

	Used to indicate the type of a string parameter.

	Type - C string X 1

	Property Set - plugin string parameter descriptor (read/write) and instance (read only),

	Default - kOfxParamStringIsSingleLine

	Valid Values - This must be one of the following
	kOfxParamStringIsSingleLine

	kOfxParamStringIsMultiLine

	kOfxParamStringIsFilePath

	kOfxParamStringIsDirectoryPath

	kOfxParamStringIsLabel

	kOfxParamStringIsRichTextFormat

	
kOfxParamPropType

	The type of a parameter.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read only) and instance (read only)

This string will be set to the type that the parameter was create with.

	
kOfxParamPropUseHostOverlayHandle

	A flag to indicate that the host should use a native UI overlay handle for the given parameter.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write only) and instance (read only)

	Default - 0

	Valid Values - 0 or 1

If set to 1, then a plugin is flaging to the host that the host should use a native UI overlay handle for the given parameter. A plugin can use this to keep a native look and feel for parameter handles. A plugin can use kOfxParamPropHasHostOverlayHandle to see if handles are available on the given parameter.

	
kOfxPluginPropFilePath

	The file path to the plugin.

	Type - C string X 1

	Property Set - effect descriptor (read only)

This is a string that indicates the file path where the plug-in was found by the host. The path is in the native path format for the host OS (eg: UNIX directory separators are forward slashes, Windows ones are backslashes).

The path is to the bundle location, see InstallationLocation. eg: ‘/usr/OFX/Plugins/AcmePlugins/AcmeFantasticPlugin.ofx.bundle’

	
kOfxPluginPropParamPageOrder

	Sets the parameter pages and order of pages.

	Type - C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - the names of any page param in the plugin

This property sets the preferred order of parameter pages on a host. If this is never set, the preferred order is the order the parameters were declared in.

	
kOfxPropAPIVersion

	Property on the host descriptor, saying what API version of the API is being implemented.

	Type - int X N

	Property Set - host descriptor.

This is a version string that will specify which version of the API is being implemented by a host. It can have multiple values. For example “1.0”, “1.2.4” etc…..

If this is not present, it is safe to assume that the version of the API is “1.0”.

	
kOfxPropChangeReason

	Indicates why a plug-in changed.

	Type - ASCII C string X 1

	Property Set - inArgs parameter on the kOfxActionInstanceChanged action.

	Valid Values - this can be…
	kOfxChangeUserEdited - the user directly edited the instance somehow and caused a change to something, this includes undo/redos and resets

	kOfxChangePluginEdited - the plug-in itself has changed the value of the object in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

Argument property for the kOfxActionInstanceChanged action.

	
kOfxPropEffectInstance

	A pointer to an effect instance.

	Type - pointer X 1

	Property Set - on an interact instance (read only)

This property is used to link an object to the effect. For example if the plug-in supplies an openGL overlay for an image effect, the interact instance will have one of these so that the plug-in can connect back to the effect the GUI links to.

	
kOfxPropHostOSHandle

	A pointer to an operating system specific application handle.

	Type - pointer X 1

	Property Set - host descriptor.

Some plug-in vendor want raw OS specific handles back from the host so they can do interesting things with host OS APIs. Typically this is to control windowing properly on Microsoft Windows. This property returns the appropriate ‘root’ window handle on the current operating system. So on Windows this would be the hWnd of the application main window.

	
kOfxPropIcon

	If set this tells the host to use an icon instead of a label for some object in the interface.

	Type - string X 2

	Property Set - various descriptors in the API

	Default - “”

	Valid Values - ASCII string

The value is a path is defined relative to the Resource folder that points to an SVG or PNG file containing the icon.

The first dimension, if set, will the name of and SVG file, the second a PNG file.

	
kOfxPropInstanceData

	A private data pointer that the plug-in can store its own data behind.

	Type - pointer X 1

	Property Set - plugin instance (read/write),

	Default - NULL

This data pointer is unique to each plug-in instance, so two instances of the same plug-in do not share the same data pointer. Use it to hang any needed private data structures.

	
kOfxPropIsInteractive

	Indicates if a host is actively editing the effect with some GUI.

	Type - int X 1

	Property Set - effect instance (read only)

	Valid Values - 0 or 1

If false the effect currently has no interface, however this may be because the effect is loaded in a background render host, or it may be loaded on an interactive host that has not yet opened an editor for the effect.

The output of an effect should only ever depend on the state of its parameters, not on the interactive flag. The interactive flag is more a courtesy flag to let a plugin know that it has an interace. If a plugin want’s to have its behaviour dependant on the interactive flag, it can always make a secret parameter which shadows the state if the flag.

	
kOfxPropKeyString

	This property encodes a single keypresses that generates a unicode code point. The value is stored as a UTF8 string.

	Type - C string X 1, UTF8

	Property Set - an read only in argument for the actions kOfxInteractActionKeyDown, kOfxInteractActionKeyUp and kOfxInteractActionKeyRepeat.

	Valid Values - a UTF8 string representing a single character, or the empty string.

This property represents the UTF8 encode value of a single key press by a user in an OFX interact.

This property is associated with a kOfxPropKeySym which represents an integer value for the key press. Some keys (for example arrow keys) have no UTF8 equivalant, in which case this is set to the empty string “”, and the associate kOfxPropKeySym is set to the equivilant raw key press.

Some keys, especially on non-english language systems, may have a UTF8 value, but not a keysym values, in these cases, the keysym will have a value of kOfxKey_Unknown, but the kOfxPropKeyString property will still be set with the UTF8 value.

	
kOfxPropKeySym

	Property used to indicate which a key on the keyboard or a button on a button device has been pressed.

	Type - int X 1

	Property Set - an read only in argument for the actions kOfxInteractActionKeyDown, kOfxInteractActionKeyUp and kOfxInteractActionKeyRepeat.

	Valid Values - one of any specified by #defines in the file ofxKeySyms.h.

This property represents a raw key press, it does not represent the ‘character value’ of the key.

This property is associated with a kOfxPropKeyString property, which encodes the UTF8 value for the keypress/button press. Some keys (for example arrow keys) have no UTF8 equivalant.

Some keys, especially on non-english language systems, may have a UTF8 value, but not a keysym values, in these cases, the keysym will have a value of kOfxKey_Unknown, but the kOfxPropKeyString property will still be set with the UTF8 value.

	
kOfxPropLabel

	User visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - the kOfxPropName the object was created with.

The label is what a user sees on any interface in place of the object’s name.

Note that resetting this will also reset kOfxPropShortLabel and kOfxPropLongLabel.

	
kOfxPropLongLabel

	Long user visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - initially kOfxPropName, but will be reset if kOfxPropLabel is changed.

This is a longer version of the label, typically 32 character glyphs or so. Hosts should use this if they have mucg display space for their object labels.

	
kOfxPropName

	Unique name of an object.

	Type - ASCII C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject (read only)

This property is used to label objects uniquely amoung objects of that type. It is typically set when a plugin creates a new object with a function that takes a name.

	
kOfxPropParamSetNeedsSyncing

	States whether the plugin needs to resync its private data.

	Type - int X 1

	Property Set - param set instance (read/write)

	Default - 0

	Valid Values -
	0 - no need to sync

	1 - paramset is not synced

The plugin should set this flag to true whenever any internal state has not been flushed to the set of params.

The host will examine this property each time it does a copy or save operation on the instance. If it is set to 1, the host will call SyncPrivateData and then set it to zero before doing the copy/save. If it is set to 0, the host will assume that the param data correctly represents the private state, and will not call SyncPrivateData before copying/saving. If this property is not set, the host will always call SyncPrivateData before copying or saving the effect (as if the property were set to 1 — but the host will not create or modify the property).

	
kOfxPropPluginDescription

	Description of the plug-in to a user.

	Type - string X 1

	Property Set - plugin descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - UTF8 string

This is a string giving a potentially verbose description of the effect.

	
kOfxPropShortLabel

	Short user visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - initially kOfxPropName, but will be reset if kOfxPropLabel is changed.

This is a shorter version of the label, typically 13 character glyphs or less. Hosts should use this if they have limitted display space for their object labels.

	
kOfxPropTime

	General property used to get/set the time of something.

	Type - double X 1

	Default - 0, if a setable property

	Property Set - commonly used as an argument to actions, input and output.

	
kOfxPropType

	General property, used to identify the kind of an object behind a handle.

	Type - ASCII C string X 1

	Property Set - any object handle (read only)

	Valid Values - currently this can be…
	kOfxTypeImageEffectHost

	kOfxTypeImageEffect

	kOfxTypeImageEffectInstance

	kOfxTypeParameter

	kOfxTypeParameterInstance

	kOfxTypeClip

	kOfxTypeImage

	
kOfxPropVersion

	Identifies a specific version of a host or plugin.

	Type - int X N

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - “0”

	Valid Values - positive integers

This is a multi dimensional integer property that represents the version of a host (host descriptor), or plugin (plugin descriptor). These represent a version number of the form ‘1.2.3.4’, with each dimension adding another ‘dot’ on the right.

A version is considered to be more recent than another if its ordered set of values is lexicographically greater than another, reading left to right. (ie: 1.2.4 is smaller than 1.2.6). Also, if the number of dimensions is different, then the values of the missing dimensions are considered to be zero (so 1.2.4 is greater than 1.2).

	
kOfxPropVersionLabel

	Unique user readable version string of a plugin or host.

	Type - string X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - none, the host needs to set this

	Valid Values - ASCII string

This is purely for user feedback, a plugin or host should use kOfxPropVersion if they need to check for specific versions.

Auto-generated Reference Index

API

	File list
	File ofxCore.h

	File ofxDialog.h

	File ofxDrawSuite.h

	File ofxGPURender.h

	File ofxImageEffect.h

	File ofxInteract.h

	File ofxKeySyms.h

	File ofxMemory.h

	File ofxMessage.h

	File ofxMultiThread.h

	File ofxOld.h

	File ofxOpenGLRender.h

	File ofxParam.h

	File ofxParametricParam.h

	File ofxPixels.h

	File ofxProgress.h

	File ofxProperty.h

	File ofxTimeLine.h

	Struct list
	Struct OfxDialogSuiteV1

	Struct OfxDrawSuiteV1

	Struct OfxHost

	Struct OfxImageEffectOpenGLRenderSuiteV1

	Struct OfxImageEffectSuiteV1

	Struct OfxInteractSuiteV1

	Struct OfxMemorySuiteV1

	Struct OfxMessageSuiteV1

	Struct OfxMessageSuiteV2

	Struct OfxMultiThreadSuiteV1

	Struct OfxParameterSuiteV1

	Struct OfxParametricParameterSuiteV1

	Struct OfxPlugin

	Struct OfxPointD

	Struct OfxPointI

	Struct OfxProgressSuiteV1

	Struct OfxProgressSuiteV2

	Struct OfxPropertySuiteV1

	Struct OfxRGBAColourB

	Struct OfxRGBAColourD

	Struct OfxRGBAColourF

	Struct OfxRGBAColourS

	Struct OfxRGBColourB

	Struct OfxRGBColourD

	Struct OfxRGBColourF

	Struct OfxRGBColourS

	Struct OfxRangeD

	Struct OfxRangeI

	Struct OfxRectD

	Struct OfxRectI

	Struct OfxTimeLineSuiteV1

	Struct OfxYUVAColourB

	Struct OfxYUVAColourF

	Struct OfxYUVAColourS

Complete Reference Index

	
struct OfxDialogSuiteV1

	
#include <ofxDialog.h>

Public Members

	
OfxStatus (*RequestDialog)(void *user_data)

	Request the host to send a kOfxActionDialog to the plugin from its UI thread.

	Pre:

	
	user_data: A pointer to any user data

	Post:

	

	Return:

	
	kOfxStatOK - The host has queued the request and will send an ‘OfxActionDialog’

	kOfxStatFailed - The host has no provisio for this or can not deal with it currently.

	
OfxStatus (*NotifyRedrawPending)(void)

	Inform the host of redraw event so it can redraw itself If the host runs fullscreen in OpenGL, it would otherwise not receive redraw event when a dialog in front would catch all events.

	Pre:

	

	Post:

	

	Return:

	
	kOfxStatReplyDefault

	
struct OfxDrawSuiteV1

	
#include <ofxDrawSuite.h>

OFX suite that allows an effect to draw to a host-defined display context.

Public Members

	
OfxStatus (*getColour)(OfxDrawContextHandle context, OfxStandardColour std_colour, OfxRGBAColourF *colour)

	Retrieves the host’s desired draw colour for.

	context - the draw context

	std_colour - the desired colour type

	colour - the returned RGBA colour

	Return:

	
	kOfxStatOK - the colour was returned

	kOfxStatErrValue - std_colour was invalid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setColour)(OfxDrawContextHandle context, const OfxRGBAColourF *colour)

	Sets the colour for future drawing operations (lines, filled shapes and text)

	context - the draw context

	colour - the RGBA colour

The host should use “over” compositing when using a non-opaque colour.

	Return:

	
	kOfxStatOK - the colour was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineWidth)(OfxDrawContextHandle context, float width)

	Sets the line width for future line drawing operations.

	context - the draw context

	width - the line width

Use width 0 for a single pixel line or non-zero for a smooth line of the desired width

The host should adjust for screen density.

	Return:

	
	kOfxStatOK - the width was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineStipple)(OfxDrawContextHandle context, OfxDrawLineStipplePattern pattern)

	Sets the stipple pattern for future line drawing operations.

	context - the draw context

	pattern - the desired stipple pattern

	Return:

	
	kOfxStatOK - the pattern was changed

	kOfxStatErrValue - pattern was not valid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*draw)(OfxDrawContextHandle context, OfxDrawPrimitive primitive, const OfxPointD *points, int point_count)

	Draws a primitive of the desired type.

	context - the draw context

	primitive - the desired primitive

	points - the array of points in the primitive

	point_count - the number of points in the array

kOfxDrawPrimitiveLines - like GL_LINES, n points draws n/2 separated lines kOfxDrawPrimitiveLineStrip - like GL_LINE_STRIP, n points draws n-1 connected lines kOfxDrawPrimitiveLineLoop - like GL_LINE_LOOP, n points draws n connected lines kOfxDrawPrimitiveRectangle - draws an axis-aligned filled rectangle defined by 2 opposite corner points kOfxDrawPrimitivePolygon - like GL_POLYGON, draws a filled n-sided polygon kOfxDrawPrimitiveEllipse - draws a axis-aligned elliptical line (not filled) within the rectangle defined by 2 opposite corner points

	Return:

	
	kOfxStatOK - the draw was completed

	kOfxStatErrValue - invalid primitive, or point_count not valid for primitive

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*drawText)(OfxDrawContextHandle context, const char *text, const OfxPointD *pos, int alignment)

	Draws text at the specified position.

	context - the draw context

	text - the text to draw (UTF-8 encoded)

	pos - the position at which to align the text

	alignment - the text alignment flags (see kOfxDrawTextAlignment*)

The text font face and size are determined by the host.

	Return:

	
	kOfxStatOK - the text was drawn

	kOfxStatErrValue - text or pos were not defined

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
struct OfxHost

	
#include <ofxCore.h>

Generic host structure passed to OfxPlugin::setHost function.

This structure contains what is needed by a plug-in to bootstrap its connection to the host.

Public Members

	
OfxPropertySetHandle host

	Global handle to the host. Extract relevant host properties from this. This pointer will be valid while the binary containing the plug-in is loaded.

	
const void *(*fetchSuite)(OfxPropertySetHandle host, const char *suiteName, int suiteVersion)

	The function which the plug-in uses to fetch suites from the host.

	host - the host the suite is being fetched from this must be the host member of the OfxHost struct containing fetchSuite.

	suiteName - ASCII string labelling the host supplied API

	suiteVersion - version of that suite to fetch

Any API fetched will be valid while the binary containing the plug-in is loaded.

Repeated calls to fetchSuite with the same parameters will return the same pointer.

returns
	NULL if the API is unknown (either the api or the version requested),

	pointer to the relevant API if it was found

	
struct OfxImageEffectOpenGLRenderSuiteV1

	
#include <ofxGPURender.h>

OFX suite that provides image to texture conversion for OpenGL processing.

Public Members

	
OfxStatus (*clipLoadTexture)(OfxImageClipHandle clip, OfxTime time, const char *format, const OfxRectD *region, OfxPropertySetHandle *textureHandle)

	loads an image from an OFX clip as a texture into OpenGL

	clip - the clip to load the image from

	time - effect time to load the image from

	format - the requested texture format (As in none,byte,word,half,float, etc..) When set to NULL, the host decides the format based on the plug-in’s kOfxOpenGLPropPixelDepth setting.

	region - region of the image to load (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	textureHandle - a property set containing information about the texture

An image is fetched from a clip at the indicated time for the given region and loaded into an OpenGL texture. When a specific format is requested, the host ensures it gives the requested format. When the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the kOfxImageEffectActionRender action. If the region parameter is set to non-NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set or is NULL, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped to the clip’s Region of Definition. Information about the texture, including the texture index, is returned in the textureHandle argument. The properties on this handle will be…
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

With the exception of the OpenGL specifics, these properties are the same as the properties in an image handle returned by clipGetImage in the image effect suite.

Note

	this is the OpenGL equivalent of clipGetImage from OfxImageEffectSuiteV1

	Pre:

	
	clip was returned by clipGetHandle

	Format property in the texture handle

	Post:

	
	texture handle to be disposed of by clipFreeTexture before the action returns

	when the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the render action.

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - not enough OpenGL memory was available for the effect to load the texture. The plugin should abort the GL render and return kOfxStatErrMemory, after which the host can decide to retry the operation with CPU based processing.

	
OfxStatus (*clipFreeTexture)(OfxPropertySetHandle textureHandle)

	Releases the texture handle previously returned by clipLoadTexture.

For input clips, this also deletes the texture from OpenGL. This should also be called on the output clip; for the Output clip, it just releases the handle but does not delete the texture (since the host will need to read it).

	Pre:

	
	textureHandle was returned by clipGetImage

	Post:

	
	all operations on textureHandle will be invalid, and the OpenGL texture it referred to has been deleted (for source clips)

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - general failure for some reason,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*flushResources)()

	Request the host to minimize its GPU resource load.

When a plugin fails to allocate GPU resources, it can call this function to request the host to flush its GPU resources if it holds any. After the function the plugin can try again to allocate resources which then might succeed if the host actually has released anything.

	Pre:

	

	Post:

	
	No changes to the plugin GL state should have been made.

	Return:

	
	kOfxStatOK - the host has actually released some resources,

	kOfxStatReplyDefault - nothing the host could do..

	
struct OfxImageEffectSuiteV1

	
#include <ofxImageEffect.h>

The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

Public Members

	
OfxStatus (*getPropertySet)(OfxImageEffectHandle imageEffect, OfxPropertySetHandle *propHandle)

	Retrieves the property set for the given image effect.

	imageEffect image effect to get the property set for

	propHandle pointer to a the property set pointer, value is returned here

The property handle is for the duration of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*getParamSet)(OfxImageEffectHandle imageEffect, OfxParamSetHandle *paramSet)

	Retrieves the parameter set for the given image effect.

	imageEffect image effect to get the property set for

	paramSet pointer to a the parameter set, value is returned here

The param set handle is valid for the lifetime of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipDefine)(OfxImageEffectHandle imageEffect, const char *name, OfxPropertySetHandle *propertySet)

	Define a clip to the effect.

	pluginHandle - the handle passed into ‘describeInContext’ action

	name - unique name of the clip to define

	propertySet - a property handle for the clip descriptor will be returned here

This function defines a clip to a host, the returned property set is used to describe various aspects of the clip to the host. Note that this does not create a clip instance.

	Pre:

	
	we are inside the describe in context action.

	Return:

	

	
OfxStatus (*clipGetHandle)(OfxImageEffectHandle imageEffect, const char *name, OfxImageClipHandle *clip, OfxPropertySetHandle *propertySet)

	Get the propery handle of the named input clip in the given instance.

	imageEffect - an instance handle to the plugin

	name - name of the clip, previously used in a clip define call

	clip - where to return the clip

	propertySet if not null, the descriptor handle for a parameter’s property set will be placed here.

The propertySet will have the same value as would be returned by OfxImageEffectSuiteV1::clipGetPropertySet This return a clip handle for the given instance, note that this will \em not be the same as the
clip handle returned by clipDefine and will be distanct to clip handles in any other instance
of the plugin.

Not a valid call in any of the describe actions.

	Pre:

	
	create instance action called,

	name passed to clipDefine for this context,

	not inside describe or describe in context actions.

	Post:

	
	handle will be valid for the life time of the instance.

	
OfxStatus (*clipGetPropertySet)(OfxImageClipHandle clip, OfxPropertySetHandle *propHandle)

	Retrieves the property set for a given clip.

	clip clip effect to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the clip, which is generally the lifetime of the instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipGetImage)(OfxImageClipHandle clip, OfxTime time, const OfxRectD *region, OfxPropertySetHandle *imageHandle)

	Get a handle for an image in a clip at the indicated time and indicated region.

	clip - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - property set containing the image’s data

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

If clipGetImage is called twice with the same parameters, then two separate image handles will be returned, each of which must be release. The underlying implementation could share image data pointers and use reference counting to maintain them.

	Pre:

	
	clip was returned by clipGetHandle

	Post:

	
	image handle is only valid for the duration of the action clipGetImage is called in

	image handle to be disposed of by clipReleaseImage before the action returns

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
OfxStatus (*clipReleaseImage)(OfxPropertySetHandle imageHandle)

	Releases the image handle previously returned by clipGetImage.

	Pre:

	
	imageHandle was returned by clipGetImage

	Post:

	
	all operations on imageHandle will be invalid

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*clipGetRegionOfDefinition)(OfxImageClipHandle clip, OfxTime time, OfxRectD *bounds)

	Returns the spatial region of definition of the clip at the given time.

	clipHandle - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - handle where the image is returned

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

	Pre:

	
	clipHandle was returned by clipGetHandle

	Post:

	
	bounds will be filled the RoD of the clip at the indicated time

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
int (*abort)(OfxImageEffectHandle imageEffect)

	Returns whether to abort processing or not.

	imageEffect - instance of the image effect

A host may want to signal to a plugin that it should stop whatever rendering it is doing and start again. Generally this is done in interactive threads in response to users tweaking some parameter.

This function indicates whether a plugin should stop whatever processing it is doing.

	Return:

	
	0 if the effect should continue whatever processing it is doing

	1 if the effect should abort whatever processing it is doing

	
OfxStatus (*imageMemoryAlloc)(OfxImageEffectHandle instanceHandle, size_t nBytes, OfxImageMemoryHandle *memoryHandle)

	Allocate memory from the host’s image memory pool.

	instanceHandle - effect instance to associate with this memory allocation, may be NULL.

	nBytes - the number of bytes to allocate

	memoryHandle - pointer to the memory handle where a return value is placed

Memory handles allocated by this should be freed by OfxImageEffectSuiteV1::imageMemoryFree. To access the memory behind the handle you need to call OfxImageEffectSuiteV1::imageMemoryLock.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if all went well, a valid memory handle is placed in memoryHandle

	kOfxStatErrBadHandle if instanceHandle is not valid, memoryHandle is set to NULL

	kOfxStatErrMemory if there was not enough memory to satisfy the call, memoryHandle is set to NULL

	
OfxStatus (*imageMemoryFree)(OfxImageMemoryHandle memoryHandle)

	Frees a memory handle and associated memory.

	memoryHandle - memory handle returned by imageMemoryAlloc

This function frees a memory handle and associated memory that was previously allocated via OfxImageEffectSuiteV1::imageMemoryAlloc

If there are outstanding locks, these are ignored and the handle and memory are freed anyway.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was cleanly deleted

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc

	
OfxStatus (*imageMemoryLock)(OfxImageMemoryHandle memoryHandle, void **returnedPtr)

	Lock the memory associated with a memory handle and make it available for use.

	memoryHandle - memory handle returned by imageMemoryAlloc

	returnedPtr - where to the pointer to the locked memory

This function locks them memory associated with a memory handle and returns a pointer to it. The memory will be 16 byte aligned, to allow use of vector operations.

Note that memory locks and unlocks nest.

After the first lock call, the contents of the memory pointer to by returnedPtr is undefined. All subsequent calls to lock will return memory with the same contents as the previous call.

Also, if unlocked, then relocked, the memory associated with a memory handle may be at a different address.

See also OfxImageEffectSuiteV1::imageMemoryUnlock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was locked, a pointer is placed in returnedPtr

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

	kOfxStatErrMemory if there was not enough memory to satisfy the call, *returnedPtr is set to NULL

	
OfxStatus (*imageMemoryUnlock)(OfxImageMemoryHandle memoryHandle)

	Unlock allocated image data.

	allocatedData - pointer to memory previously returned by OfxImageEffectSuiteV1::imageAlloc

This function unlocks a previously locked memory handle. Once completely unlocked, memory associated with a memoryHandle is no longer available for use. Attempting to use it results in undefined behaviour.

Note that locks and unlocks nest, and to fully unlock memory you need to match the count of locks placed upon it.

Also note, if you unlock a completely unlocked handle, it has no effect (ie: the lock count can’t be negative).

If unlocked, then relocked, the memory associated with a memory handle may be at a different address, however the contents will remain the same.

See also OfxImageEffectSuiteV1::imageMemoryLock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was unlocked cleanly,

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

	
struct OfxInteractSuiteV1

	
#include <ofxInteract.h>

OFX suite that allows an effect to interact with an openGL window so as to provide custom interfaces.

Public Members

	
OfxStatus (*interactSwapBuffers)(OfxInteractHandle interactInstance)

	Requests an openGL buffer swap on the interact instance.

	
OfxStatus (*interactRedraw)(OfxInteractHandle interactInstance)

	Requests a redraw of the interact instance.

	
OfxStatus (*interactGetPropertySet)(OfxInteractHandle interactInstance, OfxPropertySetHandle *property)

	Gets the property set handle for this interact handle.

	
struct OfxMemorySuiteV1

	
#include <ofxMemory.h>

The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

Public Members

	
OfxStatus (*memoryAlloc)(void *handle, size_t nBytes, void **allocatedData)

	Allocate memory.

	handle - effect instance to assosciate with this memory allocation, or NULL.

	nBytes - the number of bytes to allocate

	allocatedData - a pointer to the return value. Allocated memory will be alligned for any use.

This function has the host allocate memory using its own memory resources and returns that to the plugin.

	Return:

	
	kOfxStatOK the memory was sucessfully allocated

	kOfxStatErrMemory the request could not be met and no memory was allocated

	
OfxStatus (*memoryFree)(void *allocatedData)

	Frees memory.

	allocatedData - pointer to memory previously returned by OfxMemorySuiteV1::memoryAlloc

This function frees any memory that was previously allocated via OfxMemorySuiteV1::memoryAlloc.

	Return:

	
	kOfxStatOK the memory was sucessfully freed

	kOfxStatErrBadHandle allocatedData was not a valid pointer returned by OfxMemorySuiteV1::memoryAlloc

	
struct OfxMessageSuiteV1

	
#include <ofxMessage.h>

The OFX suite that allows a plug-in to pass messages back to a user. The V2 suite extends on this in a backwards compatible manner.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a message on the host, using printf style varargs.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

	
struct OfxMessageSuiteV2

	
#include <ofxMessage.h>

The OFX suite that allows a plug-in to pass messages back to a user.

This extends OfxMessageSuiteV1, and should be considered a replacement to version 1.

Note that this suite has been extended in backwards compatible manner, so that a host can return this struct for both V1 and V2.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a transient message on the host, using printf style varargs. Same as the V1 message suite call.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*setPersistentMessage)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a persistent message on an effect, using printf style varargs, and set error states. New for V2 message suite.

	handle - effect instance handle the message should be associated with, may NOT be null,

	messageType - string describing the kind of message to post, should be one of…
	kOfxMessageError

	kOfxMessageWarning

	kOfxMessageMessage

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

Persistent messages are associated with an effect handle until explicitly cleared by an effect. So if an error message is posted the error state, and associated message will persist and be displayed on the effect appropriately. (eg: draw a node in red on a node based compostor and display the message when clicked on).

If messageType is error or warning, associated error states should be flagged on host applications. Posting an error message implies that the host cannot proceeed, a warning allows the host to proceed, whilst a simple message should have no stop anything.

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*clearPersistentMessage)(void *handle)

	Clears any persistent message on an effect handle that was set by OfxMessageSuiteV2::setPersistentMessage. New for V2 message suite.

	handle - effect instance handle messages should be cleared from.

	handle - effect handle (descriptor or instance)

Clearing a message will clear any associated error state.

	Return:

	
	kOfxStatOK - if the message was sucessfully cleared

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be cleared for some reason

	
struct OfxMultiThreadSuiteV1

	
#include <ofxMultiThread.h>

OFX suite that provides simple SMP style multi-processing.

Public Members

	
OfxStatus (*multiThread)(OfxThreadFunctionV1 func, unsigned int nThreads, void *customArg)

	Function to spawn SMP threads.

	func The function to call in each thread.

	nThreads The number of threads to launch

	customArg The paramter to pass to customArg of func in each thread.

This function will spawn nThreads separate threads of computation (typically one per CPU) to allow something to perform symmetric multi processing. Each thread will call ‘func’ passing in the index of the thread and the number of threads actually launched.

multiThread will not return until all the spawned threads have returned. It is up to the host how it waits for all the threads to return (busy wait, blocking, whatever).

nThreads can be more than the value returned by multiThreadNumCPUs, however the threads will be limitted to the number of CPUs returned by multiThreadNumCPUs.

This function cannot be called recursively.

	Return:

	
	kOfxStatOK, the function func has executed and returned sucessfully

	kOfxStatFailed, the threading function failed to launch

	kOfxStatErrExists, failed in an attempt to call multiThread recursively,

	
OfxStatus (*multiThreadNumCPUs)(unsigned int *nCPUs)

	Function which indicates the number of CPUs available for SMP processing.

	nCPUs pointer to an integer where the result is returned

This value may be less than the actual number of CPUs on a machine, as the host may reserve other CPUs for itself.

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to get the number of CPUs

	
OfxStatus (*multiThreadIndex)(unsigned int *threadIndex)

	Function which indicates the index of the current thread.

	threadIndex pointer to an integer where the result is returned

This function returns the thread index, which is the same as the threadIndex argument passed to the OfxThreadFunctionV1.

If there are no threads currently spawned, then this function will set threadIndex to 0

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to return an index

	
int (*multiThreadIsSpawnedThread)(void)

	Function to enquire if the calling thread was spawned by multiThread.

	Return:

	
	0 if the thread is not one spawned by multiThread

	1 if the thread was spawned by multiThread

	
OfxStatus (*mutexCreate)(OfxMutexHandle *mutex, int lockCount)

	Create a mutex.

	mutex - where the new handle is returned

	count - initial lock count on the mutex. This can be negative.

Creates a new mutex with lockCount locks on the mutex intially set.

	Return:

	
	kOfxStatOK - mutex is now valid and ready to go

	
OfxStatus (*mutexDestroy)(const OfxMutexHandle mutex)

	Destroy a mutex.

Destroys a mutex intially created by mutexCreate.

	Return:

	
	kOfxStatOK - if it destroyed the mutex

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexLock)(const OfxMutexHandle mutex)

	Blocking lock on the mutex.

This trys to lock a mutex and blocks the thread it is in until the lock suceeds.

A sucessful lock causes the mutex’s lock count to be increased by one and to block any other calls to lock the mutex until it is unlocked.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexUnLock)(const OfxMutexHandle mutex)

	Unlock the mutex.

This unlocks a mutex. Unlocking a mutex decreases its lock count by one.

	Return:

	
	kOfxStatOK if it released the lock

	kOfxStatErrBadHandle if the handle was bad

	
OfxStatus (*mutexTryLock)(const OfxMutexHandle mutex)

	Non blocking attempt to lock the mutex.

This attempts to lock a mutex, if it cannot, it returns and says so, rather than blocking.

A sucessful lock causes the mutex’s lock count to be increased by one, if the lock did not suceed, the call returns immediately and the lock count remains unchanged.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatFailed - if it did not get the lock

	kOfxStatErrBadHandle - if the handle was bad

	
struct OfxParameterSuiteV1

	
#include <ofxParam.h>

The OFX suite used to define and manipulate user visible parameters.

Keyframe Handling

These functions allow the plug-in to delete and get information about keyframes.

To set keyframes, use paramSetValueAtTime().

paramGetKeyTime and paramGetKeyIndex use indices to refer to keyframes. Keyframes are stored by the host in increasing time order, so time(kf[i]) < time(kf[i+1]). Keyframe indices will change whenever keyframes are added, deleted, or moved in time, whether by the host or by the plug-in. They may vary between actions if the user changes a keyframe. The keyframe indices will not change within a single action.

	
OfxStatus (*paramGetNumKeys)(OfxParamHandle paramHandle, unsigned int *numberOfKeys)

	Returns the number of keyframes in the parameter.

	paramHandle parameter handle to interogate

	numberOfKeys pointer to integer where the return value is placed

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Returns the number of keyframes in the parameter.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetKeyTime)(OfxParamHandle paramHandle, unsigned int nthKey, OfxTime *time)

	Returns the time of the nth key.

	paramHandle parameter handle to interogate

	nthKey which key to ask about (0 to paramGetNumKeys -1), ordered by time

	time pointer to OfxTime where the return value is placed

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - the nthKey does not exist

	
OfxStatus (*paramGetKeyIndex)(OfxParamHandle paramHandle, OfxTime time, int direction, int *index)

	Finds the index of a keyframe at/before/after a specified time.

	paramHandle parameter handle to search

	time what time to search from

	direction
	== 0 indicates search for a key at the indicated time (some small delta)

	> 0 indicates search for the next key after the indicated time

	< 0 indicates search for the previous key before the indicated time

	index pointer to an integer which in which the index is returned set to -1 if no key was found

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatFailed - if the search failed to find a key

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramDeleteKey)(OfxParamHandle paramHandle, OfxTime time)

	Deletes a keyframe if one exists at the given time.

	paramHandle parameter handle to delete the key from

	time time at which a keyframe is

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - no key at the given time

	
OfxStatus (*paramDeleteAllKeys)(OfxParamHandle paramHandle)

	Deletes all keyframes from a parameter.

	paramHandle parameter handle to delete the keys from

	name parameter to delete the keyframes frome is

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

Public Members

	
OfxStatus (*paramDefine)(OfxParamSetHandle paramSet, const char *paramType, const char *name, OfxPropertySetHandle *propertySet)

	Defines a new parameter of the given type in a describe action.

	paramSet handle to the parameter set descriptor that will hold this parameter

	paramType type of the parameter to create, one of the kOfxParamType* #defines

	name unique name of the parameter

	propertySet if not null, a pointer to the parameter descriptor’s property set will be placed here.

This function defines a parameter in a parameter set and returns a property set which is used to describe that parameter.

This function does not actually create a parameter, it only says that one should exist in any subsequent instances. To fetch an parameter instance paramGetHandle must be called on an instance.

This function can always be called in one of a plug-in’s “describe” functions which defines the parameter sets common to all instances of a plugin.

	Return:

	
	kOfxStatOK - the parameter was created correctly

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrExists - if a parameter of that name exists already in this plugin

	kOfxStatErrUnknown - if the type is unknown

	kOfxStatErrUnsupported - if the type is known but unsupported

	
OfxStatus (*paramGetHandle)(OfxParamSetHandle paramSet, const char *name, OfxParamHandle *param, OfxPropertySetHandle *propertySet)

	Retrieves the handle for a parameter in a given parameter set.

	paramSet instance of the plug-in to fetch the property handle from

	name parameter to ask about

	param pointer to a param handle, the value is returned here

	propertySet if not null, a pointer to the parameter’s property set will be placed here.

Parameter handles retrieved from an instance are always distinct in each instance. The paramter handle is valid for the life-time of the instance. Parameter handles in instances are distinct from paramter handles in plugins. You cannot call this in a plugin’s describe function, as it needs an instance to work on.

	Return:

	
	kOfxStatOK - the parameter was found and returned

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramSetGetPropertySet)(OfxParamSetHandle paramSet, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter set.

	paramSet parameter set to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

Note

The property handle belonging to a parameter set is the same as the property handle belonging to the plugin instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetPropertySet)(OfxParamHandle param, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter.

	param parameter to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the parameter, which is the lifetime of the instance that owns the parameter

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetValue)(OfxParamHandle paramHandle, ...)

	Gets the current value of a parameter,.

	paramHandle parameter handle to fetch value from

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs … argument needs to be pointer to C variables of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example…

 OfxParamHandle myDoubleParam, *myColourParam;
 ofxHost->paramGetHandle(instance, "myDoubleParam", &myDoubleParam);
 double myDoubleValue;
 ofxHost->paramGetValue(myDoubleParam, &myDoubleValue);
 ofxHost->paramGetHandle(instance, "myColourParam", &myColourParam);
 double myR, myG, myB;
 ofxHost->paramGetValue(myColourParam, &myR, &myG, &myB);

Note

paramGetValue should only be called from within a kOfxActionInstanceChanged or interact action and never from the render actions (which should always use paramGetValueAtTime).

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the value of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetDerivative)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the derivative of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s derivative

This gets the derivative of the parameter at the indicated time.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can have their derivatives found.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetIntegral)(OfxParamHandle paramHandle, OfxTime time1, OfxTime time2, ...)

	Gets the integral of a parameter over a specific time range,.

	paramHandle parameter handle to fetch integral from

	time1 where to start evaluating the integral

	time2 where to stop evaluating the integral

	… one or more pointers to variables of the relevant type to hold the parameter’s integral

This gets the integral of the parameter over the specified time range.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can be integrated.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValue)(OfxParamHandle paramHandle, ...)

	Sets the current value of a parameter.

	paramHandle parameter handle to set value in

	… one or more variables of the relevant type to hold the parameter’s value

This sets the current value of a parameter. The varargs … argument needs to be values of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example… ofxHost->paramSetValue(instance, "myDoubleParam", double(10));
 ofxHost->paramSetValue(instance, "myColourParam", double(pix.r), double(pix.g), double(pix.b));

Note

paramSetValue should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Keyframes the value of a parameter at a specific time.

	paramHandle parameter handle to set value in

	time at what point in time to set the keyframe

	… one or more variables of the relevant type to hold the parameter’s value

This sets a keyframe in the parameter at the indicated time to have the indicated value. The varargs … argument needs to be values of the relevant type for this parameter. See the note on OfxParameterSuiteV1::paramSetValue for more detail

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Note

paramSetValueAtTime should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramCopy)(OfxParamHandle paramTo, OfxParamHandle paramFrom, OfxTime dstOffset, const OfxRangeD *frameRange)

	Copies one parameter to another, including any animation etc…

	paramTo parameter to set

	paramFrom parameter to copy from

	dstOffset temporal offset to apply to keys when writing to the paramTo

	frameRange if paramFrom has animation, and frameRange is not null, only this range of keys will be copied

This copies the value of paramFrom to paramTo, including any animation it may have. All the previous values in paramTo will be lost.

To choose all animation in paramFrom set frameRange to [0, 0]

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Pre:

	
	Both parameters must be of the same type.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramEditBegin)(OfxParamSetHandle paramSet, const char *name)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

	name label to attach to any undo/redo string UTF8

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the start of a set of a parameter changes that should be considered part of a single undo/redo block.

See also OfxParameterSuiteV1::paramEditEnd

Note

paramEditBegin should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

	
OfxStatus (*paramEditEnd)(OfxParamSetHandle paramSet)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the end of a set of parameter changes that should be considerred part of a single undo/redo block

See also OfxParameterSuiteV1::paramEditBegin

Note

paramEditEnd should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

	
struct OfxParametricParameterSuiteV1

	
#include <ofxParametricParam.h>

The OFX suite used to define and manipulate ‘parametric’ parameters.

This is an optional suite.

Parametric parameters are in effect ‘functions’ a plug-in can ask a host to arbitrarily evaluate for some value ‘x’. A classic use case would be for constructing look-up tables, a plug-in would ask the host to evaluate one at multiple values from 0 to 1 and use that to fill an array.

A host would probably represent this to a user as a cubic curve in a standard curve editor interface, or possibly through scripting. The user would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are returning values based on some arbitrary argument orthogonal to time, so to evaluate such a param, you need to pass a parametric position and time.

Often, you would want such a parametric parameter to be multi-dimensional, for example, a colour look-up table might want three values, one for red, green and blue. Rather than declare three separate parametric parameters, it would be better to have one such parameter with multiple values in it.

The major complication with these parameters is how to allow a plug-in to set values, and defaults. The default default value of a parametric curve is to be an identity lookup. If a plugin wishes to set a different default value for a curve, it can use the suite to set key/value pairs on the descriptor of the param. When a new instance is made, it will have these curve values as a default.

Public Members

	
OfxStatus (*parametricParamGetValue)(OfxParamHandle param, int curveIndex, OfxTime time, double parametricPosition, double *returnValue)

	Evaluates a parametric parameter.

	param handle to the parametric parameter

	curveIndex which dimension to evaluate

	time the time to evaluate to the parametric param at

	parametricPosition the position to evaluate the parametric param at

	returnValue pointer to a double where a value is returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNControlPoints)(OfxParamHandle param, int curveIndex, double time, int *returnValue)

	Returns the number of control points in the parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	returnValue pointer to an integer where the value is returned.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double *key, double *value)

	Returns the key/value pair of the nth control point.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	nthCtl the nth control point to get the value of

	key pointer to a double where the key will be returned

	value pointer to a double where the value will be returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamSetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double key, double value, bool addAnimationKey)

	Modifies an existing control point on a curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	nthCtl the control point to modify

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This modifies an existing control point. Note that by changing key, the order of the control point may be modified (as you may move it before or after anther point). So be careful when iterating over a curves control points and you change a key.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamAddControlPoint)(OfxParamHandle param, int curveIndex, double time, double key, double value, bool addAnimationKey)

	Adds a control point to the curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This will add a new control point to the given dimension of a parametric parameter. If a key exists sufficiently close to ‘key’, then it will be set to the indicated control point.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamDeleteControlPoint)(OfxParamHandle param, int curveIndex, int nthCtl)

	Deletes the nth control point from a parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to delete

	nthCtl the control point to delete

	
OfxStatus (*parametricParamDeleteAllControlPoints)(OfxParamHandle param, int curveIndex)

	Delete all curve control points on the given param.

	param handle to the parametric parameter

	curveIndex which dimension to clear

	
struct OfxPlugin

	
#include <ofxCore.h>

The structure that defines a plug-in to a host.

This structure is the first element in any plug-in structure using the OFX plug-in architecture. By examining its members a host can determine the API that the plug-in implements, the version of that API, its name and version.

For details see Architecture.

Public Members

	
const char *pluginApi

	Defines the type of the plug-in, this will tell the host what the plug-in does. e.g.: an image effects plug-in would be a “OfxImageEffectPlugin”

	
int apiVersion

	Defines the version of the pluginApi that this plug-in implements

	
const char *pluginIdentifier

	String that uniquely labels the plug-in among all plug-ins that implement an API. It need not necessarily be human sensible, however the preference is to use reverse internet domain name of the developer, followed by a ‘.’ then by a name that represents the plug-in.. It must be a legal ASCII string and have no whitespace in the name and no non printing chars. For example “uk.co.somesoftwarehouse.myPlugin”

	
unsigned int pluginVersionMajor

	Major version of this plug-in, this gets incremented when backwards compatibility is broken.

	
unsigned int pluginVersionMinor

	Major version of this plug-in, this gets incremented when software is changed, but does not break backwards compatibility.

	
void (*setHost)(OfxHost *host)

	Function the host uses to connect the plug-in to the host’s api fetcher.

	fetchApi - pointer to host’s API fetcher

Mandatory function.

The very first function called in a plug-in. The plug-in must not call any OFX functions within this, it must only set its local copy of the host pointer.

	Pre:

	
	nothing else has been called

	Post:

	
	the pointer suite is valid until the plug-in is unloaded

	
OfxPluginEntryPoint *mainEntry

	Main entry point for plug-ins.

Mandatory function.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

Preconditions
	setHost has been called

	
struct OfxPointD

	
#include <ofxCore.h>

Defines two dimensional double point.

Public Members

	
double x

	

	
double y

	

	
struct OfxPointI

	
#include <ofxCore.h>

Defines two dimensional integer point.

Public Members

	
int x

	

	
int y

	

	
struct OfxProgressSuiteV1

	
#include <ofxProgress.h>

A suite that provides progress feedback from a plugin to an application.

A plugin instance can initiate, update and close a progress indicator with this suite.

This is an optional suite in the Image Effect API.

API V1.4: Amends the documentation of progress suite V1 so that it is expected that it can be raised in a modal manner and have a “cancel” button when invoked in instanceChanged. Plugins that perform analysis post an appropriate message, raise the progress monitor in a modal manner and should poll to see if processing has been aborted. Any cancellation should be handled gracefully by the plugin (eg: reset analysis parameters to default values), clear allocated memory…

Many hosts already operate as described above. kOfxStatReplyNo should be returned to the plugin during progressUpdate when the user presses cancel.

Suite V2: Adds an ID that can be looked up for internationalisation and so on. When a new version is introduced, because plug-ins need to support old versions, and plug-in’s new releases are not necessary in synch with hosts (or users don’t immediately update), best practice is to support the 2 suite versions. That is, the plugin should check if V2 exists; if not then check if V1 exists. This way a graceful transition is guaranteed. So plugin should fetchSuite passing 2, (OfxProgressSuiteV2*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,2); and if no success pass (OfxProgressSuiteV1*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,1);

Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *label)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	label - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

	
struct OfxProgressSuiteV2

	
#include <ofxProgress.h>

Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *message, const char *messageid)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	message - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	messageId - plugin-specified id to associate with this message. If overriding the message in an XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur. New in V2 of this suite.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

	
struct OfxPropertySuiteV1

	
#include <ofxProperty.h>

The OFX suite used to access properties on OFX objects.

Public Members

	
OfxStatus (*propSetPointer)(OfxPropertySetHandle properties, const char *property, int index, void *value)

	Set a single value in a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetString)(OfxPropertySetHandle properties, const char *property, int index, const char *value)

	Set a single value in a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDouble)(OfxPropertySetHandle properties, const char *property, int index, double value)

	Set a single value in a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetInt)(OfxPropertySetHandle properties, const char *property, int index, int value)

	Set a single value in an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void *const *value)

	Set multiple values of the pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetStringN)(OfxPropertySetHandle properties, const char *property, int count, const char *const *value)

	Set multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, const double *value)

	Set multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetIntN)(OfxPropertySetHandle properties, const char *property, int count, const int *value)

	Set multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propGetPointer)(OfxPropertySetHandle properties, const char *property, int index, void **value)

	Get a single value from a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetString)(OfxPropertySetHandle properties, const char *property, int index, char **value)

	Get a single value of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDouble)(OfxPropertySetHandle properties, const char *property, int index, double *value)

	Get a single value of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetInt)(OfxPropertySetHandle properties, const char *property, int index, int *value)

	Get a single value of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void **value)

	Get multiple values of a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetStringN)(OfxPropertySetHandle properties, const char *property, int count, char **value)

	Get multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, double *value)

	Get multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetIntN)(OfxPropertySetHandle properties, const char *property, int count, int *value)

	Get multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propReset)(OfxPropertySetHandle properties, const char *property)

	Resets all dimensions of a property to its default value.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	
OfxStatus (*propGetDimension)(OfxPropertySetHandle properties, const char *property, int *count)

	Gets the dimension of the property.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	count is a pointer to an integer where the value is returned

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	
struct OfxRangeD

	
#include <ofxCore.h>

Defines one dimensional double bounds.

Public Members

	
double min

	

	
double max

	

	
struct OfxRangeI

	
#include <ofxCore.h>

Defines one dimensional integer bounds.

Public Members

	
int min

	

	
int max

	

	
struct OfxRectD

	
#include <ofxCore.h>

Defines two dimensional double region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
double x1

	

	
double y1

	

	
double x2

	

	
double y2

	

	
struct OfxRectI

	
#include <ofxCore.h>

Defines two dimensional integer region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
int x1

	

	
int y1

	

	
int x2

	

	
int y2

	

	
struct OfxRGBAColourB

	
#include <ofxPixels.h>

Defines an 8 bit per component RGBA pixel.

Public Members

	
unsigned char r

	

	
unsigned char g

	

	
unsigned char b

	

	
unsigned char a

	

	
struct OfxRGBAColourD

	
#include <ofxPixels.h>

Defines a double precision floating point component RGBA pixel.

Public Members

	
double r

	

	
double g

	

	
double b

	

	
double a

	

	
struct OfxRGBAColourF

	
#include <ofxPixels.h>

Defines a floating point component RGBA pixel.

Public Members

	
float r

	

	
float g

	

	
float b

	

	
float a

	

	
struct OfxRGBAColourS

	
#include <ofxPixels.h>

Defines a 16 bit per component RGBA pixel.

Public Members

	
unsigned short r

	

	
unsigned short g

	

	
unsigned short b

	

	
unsigned short a

	

	
struct OfxRGBColourB

	
#include <ofxPixels.h>

Defines an 8 bit per component RGB pixel.

Public Members

	
unsigned char r

	

	
unsigned char g

	

	
unsigned char b

	

	
struct OfxRGBColourD

	
#include <ofxPixels.h>

Defines a double precision floating point component RGB pixel.

Public Members

	
double r

	

	
double g

	

	
double b

	

	
struct OfxRGBColourF

	
#include <ofxPixels.h>

Defines a floating point component RGB pixel.

Public Members

	
float r

	

	
float g

	

	
float b

	

	
struct OfxRGBColourS

	
#include <ofxPixels.h>

Defines a 16 bit per component RGB pixel.

Public Members

	
unsigned short r

	

	
unsigned short g

	

	
unsigned short b

	

	
struct OfxTimeLineSuiteV1

	
#include <ofxTimeLine.h>

Suite to control timelines.

This suite is used to enquire and control a timeline associated with a plug-in instance.

This is an optional suite in the Image Effect API.

Public Members

	
OfxStatus (*getTime)(void *instance, double *time)

	Get the time value of the timeline that is controlling to the indicated effect.

	instance - is the instance of the effect changing the timeline, cast to a void *

	time - a pointer through which the timeline value should be returned

This function returns the current time value of the timeline associated with the effect instance.

	Return:

	
	kOfxStatOK - the time enquiry was sucessful

	kOfxStatFailed - the enquiry failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	
OfxStatus (*gotoTime)(void *instance, double time)

	Move the timeline control to the indicated time.

	instance - is the instance of the effect changing the timeline, cast to a void *

	time - is the time to change the timeline to. This is in the temporal coordinate system of the effect.

This function moves the timeline to the indicated frame and returns. Any side effects of the timeline change are also triggered and completed before this returns (for example instance changed actions and renders if the output of the effect is being viewed).

	Return:

	
	kOfxStatOK - the time was changed sucessfully, will all side effects if the change completed

	kOfxStatFailed - the change failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	kOfxStatErrValue - the time was an illegal value

	
OfxStatus (*getTimeBounds)(void *instance, double *firstTime, double *lastTime)

	Get the current bounds on a timeline.

	instance - is the instance of the effect changing the timeline, cast to a void *

	firstTime - is the first time on the timeline. This is in the temporal coordinate system of the effect.

	lastTime - is last time on the timeline. This is in the temporal coordinate system of the effect.

This function

	Return:

	
	kOfxStatOK - the time enquiry was sucessful

	kOfxStatFailed - the enquiry failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	
struct OfxYUVAColourB

	
#include <ofxOld.h>

Defines an 8 bit per component YUVA pixel — ofxPixels.h Deprecated in 1.3, removed in 1.4.

Public Members

	
unsigned char y

	

	
unsigned char u

	

	
unsigned char v

	

	
unsigned char a

	

	
struct OfxYUVAColourF

	
#include <ofxOld.h>

Defines an floating point component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

Public Members

	
float y

	

	
float u

	

	
float v

	

	
float a

	

	
struct OfxYUVAColourS

	
#include <ofxOld.h>

Defines an 16 bit per component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

Public Members

	
unsigned short y

	

	
unsigned short u

	

	
unsigned short v

	

	
unsigned short a

	

	
file ofxCore.h

	
#include “stddef.h”

#include <limits.h>

Contains the core OFX architectural struct and function definitions. For more details on the basic OFX architecture, see Architecture.

Defines

	
OfxExport

	Platform independent export macro.

This macro is to be used before any symbol that is to be exported from a plug-in. This is OS/compiler dependent.

	
kOfxActionLoad

	This action is the first action passed to a plug-in after the binary containing the plug-in has been loaded. It is there to allow a plug-in to create any global data structures it may need and is also when the plug-in should fetch suites from the host.

The handle, inArgs and outArgs arguments to the mainEntry are redundant and should be set to NULL.

	Pre:

	
	The plugin’s OfxPlugin::setHost function has been called

	Post:

	This action will not be called again while the binary containing the plug-in remains loaded.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well,

	kOfxStatReplyDefault, the action was ignored,

	kOfxStatFailed, the load action failed, no further actions will be passed to the plug-in. Interpret if possible kOfxStatFailed as plug-in indicating it does not want to load Do not create an entry in the host’s UI for plug-in then.

Plug-in also has the option to return 0 for OfxGetNumberOfPlugins or kOfxStatFailed if host supports OfxSetHost in which case kOfxActionLoad will never be called.

	kOfxStatErrFatal, fatal error in the plug-in.

	
kOfxActionDescribe

	The kOfxActionDescribe is the second action passed to a plug-in. It is where a plugin defines how it behaves and the resources it needs to function.

Note that the handle passed in acts as a descriptor for, rather than an instance of the plugin. The handle is global and unique. The plug-in is at liberty to cache the handle away for future reference until the plug-in is unloaded.

Most importantly, the effect must set what image effect contexts it is capable of working in.

This action must be trapped, it is not optional.

	Parameters:

	
	handle – handle to the plug-in descriptor, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionLoad has been called

	Post:

	
	kOfxActionDescribe will not be called again, unless it fails and returns one of the error codes where the host is allowed to attempt the action again

	the handle argument, being the global plug-in description handle, is a valid handle from the end of a sucessful describe action until the end of the kOfxActionUnload action (ie: the plug-in can cache it away without worrying about it changing between actions).

	kOfxImageEffectActionDescribeInContext will be called once for each context that the host and plug-in mutually support. If a plug-in does not report to support any context supported by host, host should not enable the plug-in.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatErrMissingHostFeature, in which the plugin will be unloaded and ignored, plugin may post message

	kOfxStatErrMemory, in which case describe may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxActionUnload

	This action is the last action passed to the plug-in before the binary containing the plug-in is unloaded. It is there to allow a plug-in to destroy any global data structures it may have created.

The handle, inArgs and outArgs arguments to the main entry are redundant and should be set to NULL.

	Pre:

	
	the kOfxActionLoad action has been called

	all instances of a plugin have been destroyed

	Post:

	
	No other actions will be called.

	Returns:

	
	kOfxStatOK, the action was trapped all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal, in which case we the program will be forced to quit

	
kOfxActionPurgeCaches

	This action is an action that may be passed to a plug-in instance from time to time in low memory situations. Instances recieving this action should destroy any data structures they may have and release the associated memory, they can later reconstruct this from the effect’s parameter set and associated information.

For Image Effects, it is generally a bad idea to call this after each render, but rather it should be called after kOfxImageEffectActionEndSequenceRender Some effects, typically those flagged with the kOfxImageEffectInstancePropSequentialRender property, may need to cache information from previously rendered frames to function correctly, or have data structures that are expensive to reconstruct at each frame (eg: a particle system). Ideally, such effect should free such structures during the kOfxImageEffectActionEndSequenceRender action.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionSyncPrivateData

	This action is called when a plugin should synchronise any private data structures to its parameter set. This generally occurs when an effect is about to be saved or copied, but it could occur in other situations as well.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Post:

	
	Any private state data can be reconstructed from the parameter set,

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionCreateInstance

	This action is the first action passed to a plug-in’s instance after its creation. It is there to allow a plugin to create any per-instance data structures it may need.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called

	the instance is fully constructed, with all objects requested in the describe actions (eg, parameters and clips) have been constructed and have had their initial values set. This means that if the values are being loaded from an old setup, that load should have taken place before the create instance action is called.

	Post:

	
	the instance pointer will be valid until the kOfxActionDestroyInstance action is passed to the plug-in with the same instance handle

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrFatal

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should destroy the instanace handle and not attempt to proceed further

	
kOfxActionDestroyInstance

	This action is the last passed to a plug-in’s instance before its destruction. It is there to allow a plugin to destroy any per-instance data structures it may have created.

	kOfxStatOK, the action was trapped and all was well,

	kOfxStatReplyDefault, the action was ignored as the effect had nothing to do,

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the handle,

	the instance has not had any of its members destroyed yet,

	Post:

	
	the instance pointer is no longer valid and any operation on it will be undefined

	Returns:

	To some extent, what is returned is moot, a bit like throwing an exception in a C++ destructor, so the host should continue destruction of the instance regardless.

	
kOfxActionInstanceChanged

	This action signals that something has changed in a plugin’s instance, either by user action, the host or the plugin itself. All change actions are bracketed by a pair of kOfxActionBeginInstanceChanged and kOfxActionEndInstanceChanged actions. The inArgs property set is used to determine what was the thing inside the instance that was changed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropType The type of the thing that changed which will be one of..

	kOfxTypeParameter Indicating a parameter’s value has changed in some way

	kOfxTypeClip A clip to an image effect has changed in some way (for Image Effect Plugins only)

	kOfxPropName the name of the thing that was changed in the instance

	kOfxPropChangeReason what triggered the change, which will be one of…

	kOfxChangeUserEdited - the user or host changed the instance somehow and caused a change to something, this includes undo/redos, resets and loading values from files or presets,

	kOfxChangePluginEdited - the plugin itself has changed the value of the instance in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

	kOfxPropTime

	the effect time at which the chang occured (for Image Effect Plugins only)

	kOfxImageEffectPropRenderScale

	the render scale currently being applied to any image fetched from a clip (for Image Effect Plugins only)

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	kOfxActionBeginInstanceChanged has been called on the instance handle.

	Post:

	
	kOfxActionEndInstanceChanged will be called on the instance handle.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionBeginInstanceChanged

	The kOfxActionBeginInstanceChanged and kOfxActionEndInstanceChanged actions are used to bracket all kOfxActionInstanceChanged actions, whether a single change or multiple changes. Some changes to a plugin instance can be grouped logically (eg: a ‘reset all’ button resetting all the instance’s parameters), the begin/end instance changed actions allow a plugin to respond appropriately to a large set of changes. For example, a plugin that maintains a complex internal state can delay any changes to that state until all parameter changes have completed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropChangeReason what triggered the change, which will be one of…

	kOfxChangeUserEdited - the user or host changed the instance somehow and caused a change to something, this includes undo/redos, resets and loading values from files or presets,

	kOfxChangePluginEdited - the plugin itself has changed the value of the instance in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

	outArgs – is redundant and is set to NULL

	Post:

	
	For kOfxActionBeginInstanceChanged , kOfxActionCreateInstance has been called on the instance handle.

	For kOfxActionEndInstanceChanged , kOfxActionBeginInstanceChanged has been called on the instance handle.

	kOfxActionCreateInstance has been called on the instance handle.

	Post:

	
	For kOfxActionBeginInstanceChanged, kOfxActionInstanceChanged will be called at least once on the instance handle.

	kOfxActionEndInstanceChanged will be called on the instance handle.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionEndInstanceChanged

	Action called after the end of a set of kOfxActionEndInstanceChanged actions, used with kOfxActionBeginInstanceChanged to bracket a grouped set of changes, see kOfxActionBeginInstanceChanged.

	
kOfxActionBeginInstanceEdit

	This is called when an instance is first actively edited by a user, ie: and interface is open and parameter values and input clips can be modified. It is there so that effects can create private user interface structures when necassary. Note that some hosts can have multiple editors open on the same effect instance simulateously.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Post:

	
	kOfxActionEndInstanceEdit will be called when the last editor is closed on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionEndInstanceEdit

	This is called when the last user interface on an instance closed. It is there so that effects can destroy private user interface structures when necassary. Note that some hosts can have multiple editors open on the same effect instance simulateously, this will only be called when the last of those editors are closed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionBeginInstanceEdit has been called on the instance handle,

	Post:

	
	no user interface is open on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxPropAPIVersion

	Property on the host descriptor, saying what API version of the API is being implemented.

	Type - int X N

	Property Set - host descriptor.

This is a version string that will specify which version of the API is being implemented by a host. It can have multiple values. For example “1.0”, “1.2.4” etc…..

If this is not present, it is safe to assume that the version of the API is “1.0”.

	
kOfxPropTime

	General property used to get/set the time of something.

	Type - double X 1

	Default - 0, if a setable property

	Property Set - commonly used as an argument to actions, input and output.

	
kOfxPropIsInteractive

	Indicates if a host is actively editing the effect with some GUI.

	Type - int X 1

	Property Set - effect instance (read only)

	Valid Values - 0 or 1

If false the effect currently has no interface, however this may be because the effect is loaded in a background render host, or it may be loaded on an interactive host that has not yet opened an editor for the effect.

The output of an effect should only ever depend on the state of its parameters, not on the interactive flag. The interactive flag is more a courtesy flag to let a plugin know that it has an interace. If a plugin want’s to have its behaviour dependant on the interactive flag, it can always make a secret parameter which shadows the state if the flag.

	
kOfxPluginPropFilePath

	The file path to the plugin.

	Type - C string X 1

	Property Set - effect descriptor (read only)

This is a string that indicates the file path where the plug-in was found by the host. The path is in the native path format for the host OS (eg: UNIX directory separators are forward slashes, Windows ones are backslashes).

The path is to the bundle location, see InstallationLocation. eg: ‘/usr/OFX/Plugins/AcmePlugins/AcmeFantasticPlugin.ofx.bundle’

	
kOfxPropInstanceData

	A private data pointer that the plug-in can store its own data behind.

	Type - pointer X 1

	Property Set - plugin instance (read/write),

	Default - NULL

This data pointer is unique to each plug-in instance, so two instances of the same plug-in do not share the same data pointer. Use it to hang any needed private data structures.

	
kOfxPropType

	General property, used to identify the kind of an object behind a handle.

	Type - ASCII C string X 1

	Property Set - any object handle (read only)

	Valid Values - currently this can be…
	kOfxTypeImageEffectHost

	kOfxTypeImageEffect

	kOfxTypeImageEffectInstance

	kOfxTypeParameter

	kOfxTypeParameterInstance

	kOfxTypeClip

	kOfxTypeImage

	
kOfxPropName

	Unique name of an object.

	Type - ASCII C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject (read only)

This property is used to label objects uniquely amoung objects of that type. It is typically set when a plugin creates a new object with a function that takes a name.

	
kOfxPropVersion

	Identifies a specific version of a host or plugin.

	Type - int X N

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - “0”

	Valid Values - positive integers

This is a multi dimensional integer property that represents the version of a host (host descriptor), or plugin (plugin descriptor). These represent a version number of the form ‘1.2.3.4’, with each dimension adding another ‘dot’ on the right.

A version is considered to be more recent than another if its ordered set of values is lexicographically greater than another, reading left to right. (ie: 1.2.4 is smaller than 1.2.6). Also, if the number of dimensions is different, then the values of the missing dimensions are considered to be zero (so 1.2.4 is greater than 1.2).

	
kOfxPropVersionLabel

	Unique user readable version string of a plugin or host.

	Type - string X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - none, the host needs to set this

	Valid Values - ASCII string

This is purely for user feedback, a plugin or host should use kOfxPropVersion if they need to check for specific versions.

	
kOfxPropPluginDescription

	Description of the plug-in to a user.

	Type - string X 1

	Property Set - plugin descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - UTF8 string

This is a string giving a potentially verbose description of the effect.

	
kOfxPropLabel

	User visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - the kOfxPropName the object was created with.

The label is what a user sees on any interface in place of the object’s name.

Note that resetting this will also reset kOfxPropShortLabel and kOfxPropLongLabel.

	
kOfxPropIcon

	If set this tells the host to use an icon instead of a label for some object in the interface.

	Type - string X 2

	Property Set - various descriptors in the API

	Default - “”

	Valid Values - ASCII string

The value is a path is defined relative to the Resource folder that points to an SVG or PNG file containing the icon.

The first dimension, if set, will the name of and SVG file, the second a PNG file.

	
kOfxPropShortLabel

	Short user visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - initially kOfxPropName, but will be reset if kOfxPropLabel is changed.

This is a shorter version of the label, typically 13 character glyphs or less. Hosts should use this if they have limitted display space for their object labels.

	
kOfxPropLongLabel

	Long user visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - initially kOfxPropName, but will be reset if kOfxPropLabel is changed.

This is a longer version of the label, typically 32 character glyphs or so. Hosts should use this if they have mucg display space for their object labels.

	
kOfxPropChangeReason

	Indicates why a plug-in changed.

	Type - ASCII C string X 1

	Property Set - inArgs parameter on the kOfxActionInstanceChanged action.

	Valid Values - this can be…
	kOfxChangeUserEdited - the user directly edited the instance somehow and caused a change to something, this includes undo/redos and resets

	kOfxChangePluginEdited - the plug-in itself has changed the value of the object in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

Argument property for the kOfxActionInstanceChanged action.

	
kOfxPropEffectInstance

	A pointer to an effect instance.

	Type - pointer X 1

	Property Set - on an interact instance (read only)

This property is used to link an object to the effect. For example if the plug-in supplies an openGL overlay for an image effect, the interact instance will have one of these so that the plug-in can connect back to the effect the GUI links to.

	
kOfxPropHostOSHandle

	A pointer to an operating system specific application handle.

	Type - pointer X 1

	Property Set - host descriptor.

Some plug-in vendor want raw OS specific handles back from the host so they can do interesting things with host OS APIs. Typically this is to control windowing properly on Microsoft Windows. This property returns the appropriate ‘root’ window handle on the current operating system. So on Windows this would be the hWnd of the application main window.

	
kOfxChangeUserEdited

	String used as a value to kOfxPropChangeReason to indicate a user has changed something.

	
kOfxChangePluginEdited

	String used as a value to kOfxPropChangeReason to indicate the plug-in itself has changed something.

	
kOfxChangeTime

	String used as a value to kOfxPropChangeReason to a time varying object has changed due to a time change.

	
kOfxFlagInfiniteMax

	Used to flag infinite rects. Set minimums to this to indicate infinite.

This is effectively INT_MAX.

	
kOfxFlagInfiniteMin

	Used to flag infinite rects. Set minimums to this to indicate infinite.

This is effectively INT_MIN

	
kOfxBitDepthNone

	String used to label unset bitdepths.

	
kOfxBitDepthByte

	String used to label unsigned 8 bit integer samples.

	
kOfxBitDepthShort

	String used to label unsigned 16 bit integer samples.

	
kOfxBitDepthHalf

	String used to label half-float (16 bit floating point) samples.

	Version
	Added in Version 1.4. Was in ofxOpenGLRender.h before.

	
kOfxBitDepthFloat

	String used to label signed 32 bit floating point samples.

	
kOfxStatOK

	Status code indicating all was fine.

	
kOfxStatFailed

	Status error code for a failed operation.

	
kOfxStatErrFatal

	Status error code for a fatal error.

Only returned in the case where the plug-in or host cannot continue to function and needs to be restarted.

	
kOfxStatErrUnknown

	Status error code for an operation on or request for an unknown object.

	
kOfxStatErrMissingHostFeature

	Status error code returned by plug-ins when they are missing host functionality, either an API or some optional functionality (eg: custom params).

Plug-Ins returning this should post an appropriate error message stating what they are missing.

	
kOfxStatErrUnsupported

	Status error code for an unsupported feature/operation.

	
kOfxStatErrExists

	Status error code for an operation attempting to create something that exists.

	
kOfxStatErrFormat

	Status error code for an incorrect format.

	
kOfxStatErrMemory

	Status error code indicating that something failed due to memory shortage.

	
kOfxStatErrBadHandle

	Status error code for an operation on a bad handle.

	
kOfxStatErrBadIndex

	Status error code indicating that a given index was invalid or unavailable.

	
kOfxStatErrValue

	Status error code indicating that something failed due an illegal value.

	
kOfxStatReplyYes

	OfxStatus returned indicating a ‘yes’.

	
kOfxStatReplyNo

	OfxStatus returned indicating a ‘no’.

	
kOfxStatReplyDefault

	OfxStatus returned indicating that a default action should be performed.

Typedefs

	
typedef struct OfxPropertySetStruct *OfxPropertySetHandle

	Blind data structure to manipulate sets of properties through.

	
typedef int OfxStatus

	OFX status return type.

	
typedef struct OfxHost OfxHost

	Generic host structure passed to OfxPlugin::setHost function.

This structure contains what is needed by a plug-in to bootstrap its connection to the host.

	
OfxStatus() OfxPluginEntryPoint (const char *action, const void *handle, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Entry point for plug-ins.

	action - ASCII c string indicating which action to take

	instance - object to which action should be applied, this will need to be cast to the appropriate blind data type depending on the action

	inData - handle that contains action specific properties

	outData - handle where the plug-in should set various action specific properties

This is how the host generally communicates with a plug-in. Entry points are used to pass messages to various objects used within OFX. The main use is within the OfxPlugin struct.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

	
typedef struct OfxPlugin OfxPlugin

	The structure that defines a plug-in to a host.

This structure is the first element in any plug-in structure using the OFX plug-in architecture. By examining its members a host can determine the API that the plug-in implements, the version of that API, its name and version.

For details see Architecture.

	
typedef double OfxTime

	How time is specified within the OFX API.

	
typedef struct OfxRangeI OfxRangeI

	Defines one dimensional integer bounds.

	
typedef struct OfxRangeD OfxRangeD

	Defines one dimensional double bounds.

	
typedef struct OfxPointI OfxPointI

	Defines two dimensional integer point.

	
typedef struct OfxPointD OfxPointD

	Defines two dimensional double point.

	
typedef struct OfxRectI OfxRectI

	Defines two dimensional integer region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

	
typedef struct OfxRectD OfxRectD

	Defines two dimensional double region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Functions

	
OfxPlugin *OfxGetPlugin(int nth)

	Returns the ‘nth’ plug-in implemented inside a binary.

Returns a pointer to the ‘nth’ plug-in implemented in the binary. A function of this type must be implemented in and exported from each plug-in binary.

	
int OfxGetNumberOfPlugins(void)

	Defines the number of plug-ins implemented inside a binary.

A host calls this to determine how many plug-ins there are inside a binary it has loaded. A function of this type must be implemented in and exported from each plug-in binary.

	
OfxStatus OfxSetHost(const OfxHost *host)

	First thing host should call.

This host call, added in 2020, is not specified in earlier implementation of the API. Therefore host must check if the plugin implemented it and not assume symbol exists. The order of calls is then: 1) OfxSetHost, 2) OfxGetNumberOfPlugins, 3) OfxGetPlugin The host pointer is only assumed valid until OfxGetPlugin where it might get reset. Plug-in can return kOfxStatFailed to indicate it has nothing to do here, it’s not for this Host and it should be skipped silently.

	
file ofxDialog.h

	
#include “ofxCore.h”

#include “ofxProperty.h”

This file contains an optional suite which should be used to popup a native OS dialog from a host parameter changed action.

When a host uses a fullscreen window and is running the OFX plugins in another thread it can lead to a lot of conflicts if that plugin will try to open its own window.

This suite will provide the functionality for a plugin to request running its dialog in the UI thread, and informing the host it will do this so it can take the appropriate actions needed. (Like lowering its priority etc..)

Defines

	
kOfxDialogSuite

	The name of the Dialog suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxActionDialog

	Action called after a dialog has requested a ‘Dialog’ The arguments to the action are:

	user_data - Pointer which was provided when the plugin requested the Dialog

When the plugin receives this action it is safe to popup a dialog. It runs in the host’s UI thread, which may differ from the main OFX processing thread. Plugin should return from this action when all Dialog interactions are done. At that point the host will continue again. The host will not send any other messages asynchronous to this one.

Typedefs

	
typedef struct OfxDialogSuiteV1 OfxDialogSuiteV1

	

	
file ofxDrawSuite.h

	
#include “ofxCore.h”

#include “ofxPixels.h”

Contains the API for host-independent drawing. Added for OFX 1.5, Jan 2022.

Defines

	
kOfxDrawSuite

	the string that names the DrawSuite, passed to OfxHost::fetchSuite

	
kOfxInteractPropDrawContext

	The Draw Context handle.

	Type - pointer X 1

	Property Set - read only property on the inArgs of the following actions…

	kOfxInteractActionDraw

Typedefs

	
typedef struct OfxDrawContext *OfxDrawContextHandle

	Blind declaration of an OFX drawing context.

	
typedef enum OfxStandardColour OfxStandardColour

	Defines valid values for OfxDrawSuiteV1::getColour.

	
typedef enum OfxDrawLineStipplePattern OfxDrawLineStipplePattern

	Defines valid values for OfxDrawSuiteV1::setLineStipple.

	
typedef enum OfxDrawPrimitive OfxDrawPrimitive

	Defines valid values for OfxDrawSuiteV1::draw.

	
typedef enum OfxDrawTextAlignment OfxDrawTextAlignment

	Defines text alignment values for OfxDrawSuiteV1::drawText.

	
typedef struct OfxDrawSuiteV1 OfxDrawSuiteV1

	OFX suite that allows an effect to draw to a host-defined display context.

Enums

	
enum OfxStandardColour

	Defines valid values for OfxDrawSuiteV1::getColour.

Values:

	
enumerator kOfxStandardColourOverlayBackground

	

	
enumerator kOfxStandardColourOverlayActive

	

	
enumerator kOfxStandardColourOverlaySelected

	

	
enumerator kOfxStandardColourOverlayDeselected

	

	
enumerator kOfxStandardColourOverlayMarqueeFG

	

	
enumerator kOfxStandardColourOverlayMarqueeBG

	

	
enumerator kOfxStandardColourOverlayText

	

	
enum OfxDrawLineStipplePattern

	Defines valid values for OfxDrawSuiteV1::setLineStipple.

Values:

	
enumerator kOfxDrawLineStipplePatternSolid

	

	
enumerator kOfxDrawLineStipplePatternDot

	

	
enumerator kOfxDrawLineStipplePatternDash

	

	
enumerator kOfxDrawLineStipplePatternAltDash

	

	
enumerator kOfxDrawLineStipplePatternDotDash

	

	
enum OfxDrawPrimitive

	Defines valid values for OfxDrawSuiteV1::draw.

Values:

	
enumerator kOfxDrawPrimitiveLines

	

	
enumerator kOfxDrawPrimitiveLineStrip

	

	
enumerator kOfxDrawPrimitiveLineLoop

	

	
enumerator kOfxDrawPrimitiveRectangle

	

	
enumerator kOfxDrawPrimitivePolygon

	

	
enumerator kOfxDrawPrimitiveEllipse

	

	
enum OfxDrawTextAlignment

	Defines text alignment values for OfxDrawSuiteV1::drawText.

Values:

	
enumerator kOfxDrawTextAlignmentLeft

	

	
enumerator kOfxDrawTextAlignmentRight

	

	
enumerator kOfxDrawTextAlignmentTop

	

	
enumerator kOfxDrawTextAlignmentBottom

	

	
enumerator kOfxDrawTextAlignmentBaseline

	

	
enumerator kOfxDrawTextAlignmentCenterH

	

	
enumerator kOfxDrawTextAlignmentCenterV

	

	
file ofxGPURender.h

	
#include “ofxImageEffect.h”

This file contains an optional suite for performing GPU-accelerated
rendering of OpenFX Image Effect Plug-ins. For details see
\ref ofxGPURender.

It allows hosts and plugins to support OpenGL, CUDA, Metal and other
GPU acceleration methods.

StatusReturnValues

OfxStatus returns indicating that a OpenGL render error has occurred:

	If a plug-in returns kOfxStatGLRenderFailed, the host should retry the render with OpenGL rendering disabled.

	If a plug-in returns kOfxStatGLOutOfMemory, the host may choose to free resources on the GPU and retry the OpenGL render, rather than immediately falling back to CPU rendering.

	
kOfxStatGPUOutOfMemory

	GPU render ran out of memory.

	
kOfxStatGLOutOfMemory

	OpenGL render ran out of memory (same as kOfxStatGPUOutOfMemory)

	
kOfxStatGPURenderFailed

	GPU render failed in a non-memory-related way.

	
kOfxStatGLRenderFailed

	OpenGL render failed in a non-memory-related way (same as kOfxStatGPURenderFailed)

Defines

	
__OFXGPURENDER_H__

	

	
kOfxOpenGLRenderSuite

	The name of the OpenGL render suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxImageEffectPropOpenGLRenderSupported

	Indicates whether a host or plugin can support OpenGL accelerated rendering.

	Type - C string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only) - plugin instance change (read/write)

	Default - “false” for a plugin

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support OpenGL accelerated rendering

	”true” - which means a host or plugin can support OpenGL accelerated rendering, in the case of plug-ins this also means that it is capable of CPU based rendering in the absence of a GPU

	”needed” - only for plug-ins, this means that an effect has to have OpenGL support, without which it cannot work.

V1.4: It is now expected from host reporting v1.4 that the plugin can during instance change switch from true to false and false to true.

	
kOfxOpenGLPropPixelDepth

	Indicates the bit depths supported by a plug-in during OpenGL renders.

This is analogous to kOfxImageEffectPropSupportedPixelDepths. When a plug-in sets this property, the host will try to provide buffers/textures in one of the supported formats. Additionally, the target buffers where the plug-in renders to will be set to one of the supported formats.

Unlike kOfxImageEffectPropSupportedPixelDepths, this property is optional. Shader-based effects might not really care about any format specifics when using OpenGL textures, so they can leave this unset and allow the host the decide the format.

	Type - string X N

	Property Set - plugin descriptor (read only)

	Default - none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

	
kOfxImageEffectPropOpenGLEnabled

	Indicates that an image effect SHOULD use OpenGL acceleration in the current action.

When a plugin and host have established they can both use OpenGL renders then when this property has been set the host expects the plugin to render its result into the buffer it has setup before calling the render. The plugin can then also safely use the ‘OfxImageEffectOpenGLRenderSuite’

	Type - int X 1

	Property Set - inArgs property set of the following actions…
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values
	0 indicates that the effect cannot use the OpenGL suite

	1 indicates that the effect should render into the texture, and may use the OpenGL suite functions.

v1.4: kOfxImageEffectPropOpenGLEnabled should probably be checked in Instance Changed prior to try to read image via clipLoadTexture

Note

Once this property is set, the host and plug-in have agreed to use OpenGL, so the effect SHOULD access all its images through the OpenGL suite.

	
kOfxImageEffectPropOpenGLTextureIndex

	Indicates the texture index of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by ` OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLuint and used as the texture index when
 performing OpenGL texture operations.

 The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropOpenGLTextureTarget

	Indicates the texture target enumerator of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLenum and used as the texture target when performing OpenGL texture operations.

The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxActionOpenGLContextAttached

	Action called when an effect has just been attached to an OpenGL context.

The purpose of this action is to allow a plugin to set up any data it may need to do OpenGL rendering in an instance. For example…
	allocate a lookup table on a GPU,

	create an openCL or CUDA context that is bound to the host’s OpenGL context so it can share buffers.

The plugin will be responsible for deallocating any such shared resource in the kOfxActionOpenGLContextDetached action.

A host cannot call kOfxActionOpenGLContextAttached on the same instance without an intervening kOfxActionOpenGLContextDetached. A host can have a plugin swap OpenGL contexts by issuing a attach/detach for the first context then another attach for the next context.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxActionOpenGLContextDetached

	Action called when an effect is about to be detached from an OpenGL context.

The purpose of this action is to allow a plugin to deallocate any resource allocated in kOfxActionOpenGLContextAttached just before the host decouples a plugin from an OpenGL context. The host must call this with the same OpenGL context active as it called with the corresponding kOfxActionOpenGLContextAttached.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

Typedefs

	
typedef struct OfxImageEffectOpenGLRenderSuiteV1 OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

	
file ofxImageEffect.h

	
#include “ofxCore.h”

#include “ofxParam.h”

#include “ofxInteract.h”

#include “ofxMessage.h”

#include “ofxMemory.h”

#include “ofxMultiThread.h”

Defines

	
_ofxImageEffect_h_

	

	
kOfxImageEffectPluginApi

	String used to label OFX Image Effect Plug-ins.

Set the pluginApi member of the OfxPluginHeader inside any OfxImageEffectPluginStruct to be this so that the host knows the plugin is an image effect.

	
kOfxImageEffectPluginApiVersion

	The current version of the Image Effect API.

	
kOfxImageComponentNone

	String to label something with unset components.

	
kOfxImageComponentRGBA

	String to label images with RGBA components.

	
kOfxImageComponentRGB

	String to label images with RGB components.

	
kOfxImageComponentAlpha

	String to label images with only Alpha components.

	
kOfxImageEffectContextGenerator

	Use to define the generator image effect context. See kOfxImageEffectPropContext.

	
kOfxImageEffectContextFilter

	Use to define the filter effect image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextTransition

	Use to define the transition image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextPaint

	Use to define the paint image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextGeneral

	Use to define the general image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextRetimer

	Use to define the retimer effect context See kOfxImageEffectPropContext.

	
kOfxTypeImageEffectHost

	Used as a value for kOfxPropType on image effect host handles.

	
kOfxTypeImageEffect

	Used as a value for kOfxPropType on image effect plugin handles.

	
kOfxTypeImageEffectInstance

	Used as a value for kOfxPropType on image effect instance handles

	
kOfxTypeClip

	Used as a value for kOfxPropType on image effect clips.

	
kOfxTypeImage

	Used as a value for kOfxPropType on image effect images.

	
kOfxImageEffectActionGetRegionOfDefinition

	The region of definition for an image effect is the rectangular section of the 2D image plane that it is capable of filling, given the state of its input clips and parameters. This action is used to calculate the RoD for a plugin instance at a given frame. For more details on regions of definition see Image Effect Architectures.

Note that hosts that have constant sized imagery need not call this action, only hosts that allow image sizes to vary need call this.

If the effect did not trap this, it means the host should use the default RoD instead, which depends on the context. This is…

	generator context - defaults to the project window,

	filter and paint contexts - defaults to the RoD of the ‘Source’ input clip at the given time,

	transition context - defaults to the union of the RoDs of the ‘SourceFrom’ and ‘SourceTo’ input clips at the given time,

	general context - defaults to the union of the RoDs of all the non optional input clips and the ‘Source’ input clip (if it exists and it is connected) at the given time, if none exist, then it is the project window

	retimer context - defaults to the union of the RoD of the ‘Source’ input clip at the frame directly preceding the value of the ‘SourceTime’ double parameter and the frame directly after it

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the effect time for which a region of definition is being requested

	kOfxImageEffectPropRenderScale the render scale that should be used in any calculations in this action

	outArgs – has the following property which the plug-in may set
	kOfxImageEffectPropRegionOfDefinition the calculated region of definition, initially set by the host to the default RoD (see below), in Canonical Coordinates.

	Returns:

	
	kOfxStatOK the action was trapped and the RoD was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetRegionsOfInterest

	This action allows a host to ask an effect, given a region I want to render, what region do you need from each of your input clips. In that way, depending on the host architecture, a host can fetch the minimal amount of the image needed as input. Note that there is a region of interest to be set in outArgs for each input clip that exists on the effect. For more details see Image EffectArchitectures”.

The default RoI is simply the value passed in on the kOfxImageEffectPropRegionOfInterest inArgs property set. All the RoIs in the outArgs property set must initialised to this value before the action is called.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the effect time for which a region of definition is being requested

	kOfxImageEffectPropRenderScale the render scale that should be used in any calculations in this action

	kOfxImageEffectPropRegionOfInterest the region to be rendered in the output image, in Canonical Coordinates.

	outArgs – has a set of 4 dimensional double properties, one for each of the input clips to the effect. The properties are each named OfxImageClipPropRoI_ with the clip name post pended, for example OfxImageClipPropRoI_Source. These are initialised to the default RoI.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one RoI was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetTimeDomain

	This action allows a host to ask an effect what range of frames it can produce images over. Only effects instantiated in the GeneralContext” can have this called on them. In all other the host is in strict control over the temporal duration of the effect.

The default is:

	the union of all the frame ranges of the non optional input clips,

	infinite if there are no non optional input clips.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is null

	outArgs – has the following property
	kOfxImageEffectPropFrameRange the frame range an effect can produce images for

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	the effect instance has been created in the general effect context

	Returns:

	
	kOfxStatOK, the action was trapped and the kOfxImageEffectPropFrameRange was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default value

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetFramesNeeded

	This action lets the host ask the effect what frames are needed from each input clip to process a given frame. For example a temporal based degrainer may need several frames around the frame to render to do its work.

This action need only ever be called if the plugin has set the kOfxImageEffectPropTemporalClipAccess property on the plugin descriptor to be true. Otherwise the host assumes that the only frame needed from the inputs is the current one and this action is not called.

Note that each clip can have it’s required frame range specified, and that you can specify discontinuous sets of ranges for each clip, for example

// The effect always needs the initial frame of the source as well as the previous and current frame
double rangeSource[4];

// required ranges on the source
rangeSource[0] = 0; // we always need frame 0 of the source
rangeSource[1] = 0;
rangeSource[2] = currentFrame - 1; // we also need the previous and current frame on the source
rangeSource[3] = currentFrame;

gPropHost->propSetDoubleN(outArgs, "OfxImageClipPropFrameRange_Source", 4, rangeSource);

 Which sets two discontinuous range of frames from the 'Source' clip
required as input.

The default frame range is simply the single frame, kOfxPropTime..kOfxPropTime, found on the inArgs property set. All the frame ranges in the outArgs property set must initialised to this value before the action is called.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following property
	kOfxPropTime the effect time for which we need to calculate the frames needed on input

	outArgs has a set of properties, one for each input clip, named OfxImageClipPropFrameRange_ with the name of the clip post-pended. For example OfxImageClipPropFrameRange_Source. All these properties are multi-dimensional doubles, with the dimension is a multiple of two. Each pair of values indicates a continuous range of frames that is needed on the given input. They are all initalised to the default value.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one frame range in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetClipPreferences

	This action allows a plugin to dynamically specify its preferences for input and output clips. Please see Image Effect Clip Preferences for more details on the behaviour. Clip preferences are constant for the duration of an effect, so this action need only be called once per clip, not once per frame.

This should be called once after creation of an instance, each time an input clip is changed, and whenever a parameter named in the kOfxImageEffectPropClipPreferencesSlaveParam has its value changed.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – has the following properties which the plugin can set
	a set of char * X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropComponents_ post pended with the clip’s name. This must be set to one of the component types which the host supports and the effect stated it can accept on that input

	a set of char * X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropDepth_ post pended with the clip’s name. This must be set to one of the pixel depths both the host and plugin supports

	a set of double X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropPAR_ post pended with the clip’s name. This is the pixel aspect ratio of the input and output clips. This must be set to a positive non zero double value,

	kOfxImageEffectPropFrameRate the frame rate of the output clip, this must be set to a positive non zero double value

	kOfxImageClipPropFieldOrder the fielding of the output clip

	kOfxImageEffectPropPreMultiplication the premultiplication of the output clip

	kOfxImageClipPropContinuousSamples whether the output clip can produce different images at non-frame intervals, defaults to false,

	kOfxImageEffectFrameVarying whether the output clip can produces different images at different times, even if all parameters and inputs are constant, defaults to false.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one of the properties in the outArgs was changed from its default value

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionIsIdentity

	Sometimes an effect can pass through an input uprocessed, for example a blur effect with a blur size of 0. This action can be called by a host before it attempts to render an effect to determine if it can simply copy input directly to output without having to call the render action on the effect.

If the effect does not need to process any pixels, it should set the value of the kOfxPropName to the clip that the host should us as the output instead, and the kOfxPropTime property on outArgs to be the time at which the frame should be fetched from a clip.

The default action is to call the render action on the effect.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the time at which to test for identity

	kOfxImageEffectPropFieldToRender the field to test for identity

	kOfxImageEffectPropRenderWindow the window (in \ref PixelCoordinates) to test for identity under

	kOfxImageEffectPropRenderScale the scale factor being applied to the images being renderred

	outArgs – has the following properties which the plugin can set
	kOfxPropName this to the name of the clip that should be used if the effect is an identity transform, defaults to the empty string

	kOfxPropTime the time to use from the indicated source clip as an identity image (allowing time slips to happen), defaults to the value in kOfxPropTime in inArgs

	Returns:

	
	kOfxStatOK, the action was trapped and the effect should not have its render action called, the values in outArgs indicate what frame from which clip to use instead

	kOfxStatReplyDefault, the action was not trapped and the host should call the render action

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionRender

	This action is where an effect gets to push pixels and turn its input clips and parameter set into an output image. This is possibly quite complicated and covered in the Rendering Image Effects chapter.

The render action must be trapped by the plug-in, it cannot return kOfxStatReplyDefault. The pixels needs be pushed I’m afraid.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the time at which to render

	kOfxImageEffectPropFieldToRender the field to render

	kOfxImageEffectPropRenderWindow the window (in \ref PixelCoordinates) to render

	kOfxImageEffectPropRenderScale the scale factor being applied to the images being renderred

	kOfxImageEffectPropSequentialRenderStatus whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus if the render is in response to a user modifying the effect in an interactive session

	kOfxImageEffectPropRenderQualityDraft if the render should be done in draft mode (e.g. for faster scrubbing)

	outArgs – is redundant and should be set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	kOfxImageEffectActionBeginSequenceRender has been called on the instance

	Post:

	
	kOfxImageEffectActionEndSequenceRender action will be called on the instance

	Returns:

	
	kOfxStatOK, the effect rendered happily

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionBeginSequenceRender

	This action is passed to an image effect before it renders a range of frames. It is there to allow an effect to set things up for a long sequence of frames. Note that this is still called, even if only a single frame is being rendered in an interactive environment.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxImageEffectPropFrameRange the range of frames (inclusive) that will be renderred

	kOfxImageEffectPropFrameStep what is the step between frames, generally set to 1 (for full frame renders) or 0.5 (for fielded renders)

	kOfxPropIsInteractive is this a single frame render due to user interaction in a GUI, or a proper full sequence render.

	kOfxImageEffectPropRenderScale the scale factor to apply to images for this call

	kOfxImageEffectPropSequentialRenderStatus whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus if the render is in response to a user modifying the effect in an interactive session

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	Post:

	
	kOfxImageEffectActionRender action will be called at least once on the instance

	kOfxImageEffectActionEndSequenceRender action will be called on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and handled cleanly by the effect,

	kOfxStatReplyDefault, the action was not trapped, but all is well anyway,

	kOfxStatErrMemory, in which case the action may be called again after a memory purge,

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message,

	kOfxStatErrFatal

	
kOfxImageEffectActionEndSequenceRender

	This action is passed to an image effect after is has rendered a range of frames. It is there to allow an effect to free resources after a long sequence of frame renders. Note that this is still called, even if only a single frame is being rendered in an interactive environment.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxImageEffectPropFrameRange the range of frames (inclusive) that will be rendered

	kOfxImageEffectPropFrameStep what is the step between frames, generally set to 1 (for full frame renders) or 0.5 (for fielded renders),

	kOfxPropIsInteractive

	is this a single frame render due to user interaction in a GUI, or a proper full sequence render.

	kOfxImageEffectPropRenderScale

	the scale factor to apply to images for this call

	kOfxImageEffectPropSequentialRenderStatus

	whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus

	if the render is in response to a user modifying the effect in an interactive session

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	kOfxImageEffectActionEndSequenceRender action was called on the instance

	kOfxImageEffectActionRender action was called at least once on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and handled cleanly by the effect,

	kOfxStatReplyDefault, the action was not trapped, but all is well anyway,

	kOfxStatErrMemory, in which case the action may be called again after a memory purge,

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message,

	kOfxStatErrFatal

	
kOfxImageEffectActionDescribeInContext

	This action is unique to OFX Image Effect plug-ins. Because a plugin is able to exhibit different behaviour depending on the context of use, each separate context will need to be described individually. It is within this action that image effects describe which parameters and input clips it requires.

This action will be called multiple times, one for each of the contexts the plugin says it is capable of implementing. If a host does not support a certain context, then it need not call kOfxImageEffectActionDescribeInContext for that context.

This action must be trapped, it is not optional.

	Parameters:

	
	handle – handle to the context descriptor, cast to an OfxImageEffectHandle this may or may not be the same as passed to kOfxActionDescribe

	inArgs – has the following property:
	kOfxImageEffectPropContext the context being described

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called on the descriptor handle,

	kOfxActionCreateInstance has not been called

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatErrMissingHostFeature, in which the context will be ignored by the host, the plugin may post a message

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectPropSupportedContexts

	Indicates to the host the contexts a plugin can be used in.

	Type - string X N

	Property Set - image effect descriptor passed to kOfxActionDescribe (read/write)

	Default - this has no defaults, it must be set

	Valid Values - This must be one of
	kOfxImageEffectContextGenerator

	kOfxImageEffectContextFilter

	kOfxImageEffectContextTransition

	kOfxImageEffectContextPaint

	kOfxImageEffectContextGeneral

	kOfxImageEffectContextRetimer

	
kOfxImageEffectPropPluginHandle

	The plugin handle passed to the initial ‘describe’ action.

	Type - pointer X 1

	Property Set - plugin instance, (read only)

This value will be the same for all instances of a plugin.

	
kOfxImageEffectHostPropIsBackground

	Indicates if a host is a background render.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 if the host is a foreground host, it may open the effect in an interactive session (or not)

	1 if the host is a background ‘processing only’ host, and the effect will never be opened in an interactive session.

	
kOfxImageEffectPluginPropSingleInstance

	Indicates whether only one instance of a plugin can exist at the same time.

	Type - int X 1

	Property Set - plugin descriptor (read/write)

	Default - 0

	Valid Values - This must be one of
	0 - which means multiple instances can exist simultaneously,

	1 - which means only one instance can exist at any one time.

Some plugins, for whatever reason, may only be able to have a single instance in existance at any one time. This plugin property is used to indicate that.

	
kOfxImageEffectPluginRenderThreadSafety

	Indicates how many simultaneous renders the plugin can deal with.

	Type - string X 1

	Property Set - plugin descriptor (read/write)

	Default - kOfxImageEffectRenderInstanceSafe

	Valid Values - This must be one of
	kOfxImageEffectRenderUnsafe - indicating that only a single ‘render’ call can be made at any time amoung all instances,

	kOfxImageEffectRenderInstanceSafe - indicating that any instance can have a single ‘render’ call at any one time,

	kOfxImageEffectRenderFullySafe - indicating that any instance of a plugin can have multiple renders running simultaneously

	
kOfxImageEffectRenderUnsafe

	String used to label render threads as un thread safe, see, kOfxImageEffectPluginRenderThreadSafety.

	
kOfxImageEffectRenderInstanceSafe

	String used to label render threads as instance thread safe, kOfxImageEffectPluginRenderThreadSafety.

	
kOfxImageEffectRenderFullySafe

	String used to label render threads as fully thread safe, kOfxImageEffectPluginRenderThreadSafety.

	
kOfxImageEffectPluginPropHostFrameThreading

	Indicates whether a plugin lets the host perform per frame SMP threading.

	Type - int X 1

	Property Set - plugin descriptor (read/write)

	Default - 1

	Valid Values - This must be one of
	0 - which means that the plugin will perform any per frame SMP threading

	1 - which means the host can call an instance’s render function simultaneously at the same frame, but with different windows to render.

	
kOfxImageEffectPropSupportsMultipleClipDepths

	Indicates whether a host or plugin can support clips of differing component depths going into/out of an effect.

	Type - int X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - 0 for a plugin

	Valid Values - This must be one of
	0 - in which case the host or plugin does not support clips of multiple pixel depths,

	1 - which means a host or plugin is able to to deal with clips of multiple pixel depths,

If a host indicates that it can support multiple pixels depths, then it will allow the plugin to explicitly set the output clip’s pixel depth in the kOfxImageEffectActionGetClipPreferences action. See ImageEffectClipPreferences.

	
kOfxImageEffectPropSupportsMultipleClipPARs

	Indicates whether a host or plugin can support clips of differing pixel aspect ratios going into/out of an effect.

	Type - int X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - 0 for a plugin

	Valid Values - This must be one of
	0 - in which case the host or plugin does not support clips of multiple pixel aspect ratios

	1 - which means a host or plugin is able to to deal with clips of multiple pixel aspect ratios

If a host indicates that it can support multiple pixel aspect ratios, then it will allow the plugin to explicitly set the output clip’s aspect ratio in the kOfxImageEffectActionGetClipPreferences action. See ImageEffectClipPreferences.

	
kOfxImageEffectPropClipPreferencesSlaveParam

	Indicates the set of parameters on which a value change will trigger a change to clip preferences.

	Type - string X N

	Property Set - plugin descriptor (read/write)

	Default - none set

	Valid Values - the name of any described parameter

The plugin uses this to inform the host of the subset of parameters that affect the effect’s clip preferences. A value change in any one of these will trigger a call to the clip preferences action.

The plugin can be slaved to multiple parameters (setting index 0, then index 1 etc…)

	
kOfxImageEffectPropSetableFrameRate

	Indicates whether the host will let a plugin set the frame rate of the output clip.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - in which case the plugin may not change the frame rate of the output clip,

	1 - which means a plugin is able to change the output clip’s frame rate in the kOfxImageEffectActionGetClipPreferences action.

See ImageEffectClipPreferences.

If a clip can be continously sampled, the frame rate will be set to 0.

	
kOfxImageEffectPropSetableFielding

	Indicates whether the host will let a plugin set the fielding of the output clip.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - in which case the plugin may not change the fielding of the output clip,

	1 - which means a plugin is able to change the output clip’s fielding in the kOfxImageEffectActionGetClipPreferences action.

See ImageEffectClipPreferences.

	
kOfxImageEffectInstancePropSequentialRender

	Indicates whether a plugin needs sequential rendering, and a host support it.

	Type - int X 1

	Property Set - plugin descriptor (read/write) or plugin instance (read/write), and host descriptor (read only)

	Default - 0

	Valid Values -
	0 - for a plugin, indicates that a plugin does not need to be sequentially rendered to be correct, for a host, indicates that it cannot ever guarantee sequential rendering,

	1 - for a plugin, indicates that it needs to be sequentially rendered to be correct, for a host, indicates that it can always support sequential rendering of plugins that are sequentially rendered,

	2 - for a plugin, indicates that it is best to render sequentially, but will still produce correct results if not, for a host, indicates that it can sometimes render sequentially, and will have set kOfxImageEffectPropSequentialRenderStatus on the relevant actions

Some effects have temporal dependancies, some information from from the rendering of frame N-1 is needed to render frame N correctly. This property is set by an effect to indicate such a situation. Also, some effects are more efficient if they run sequentially, but can still render correct images even if they do not, eg: a complex particle system.

During an interactive session a host may attempt to render a frame out of sequence (for example when the user scrubs the current time), and the effect needs to deal with such a situation as best it can to provide feedback to the user.

However if a host caches output, any frame frame generated in random temporal order needs to be considered invalid and needs to be re-rendered when the host finally performs a first to last render of the output sequence.

In all cases, a host will set the kOfxImageEffectPropSequentialRenderStatus flag to indicate its sequential render status.

	
kOfxImageEffectPropSequentialRenderStatus

	Property on all the render action that indicate the current sequential render status of a host.

	Type - int X 1

	Property Set - read only property on the inArgs of the following actions…
	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values -
	0 - the host is not currently sequentially rendering,

	1 - the host is currentely rendering in a way so that it guarantees sequential rendering.

This property is set to indicate whether the effect is currently being rendered in frame order on a single effect instance. See kOfxImageEffectInstancePropSequentialRender for more details on sequential rendering.

	
kOfxHostNativeOriginBottomLeft

	

	
kOfxHostNativeOriginTopLeft

	

	
kOfxHostNativeOriginCenter

	

	
kOfxImageEffectHostPropNativeOrigin

	Property that indicates the host native UI space - this is only a UI hint, has no impact on pixel processing.

	Type - UTF8 string X 1

	Property Set - read only property (host)
	Valid Values - “kOfxImageEffectHostPropNativeOriginBottomLeft” - 0,0 bottom left “kOfxImageEffectHostPropNativeOriginTopLeft” - 0,0 top left “kOfxImageEffectHostPropNativeOriginCenter” - 0,0 center (screen space)

This property is set to kOfxHostNativeOriginBottomLeft pre V1.4 and was to be discovered by plug-ins. This is useful for drawing overlay for points… so everything matches the rest of the app (for example expression linking to other tools, or simply match the reported location of the host viewer).

	
kOfxImageEffectPropInteractiveRenderStatus

	Property that indicates if a plugin is being rendered in response to user interaction.

	Type - int X 1

	Property Set - read only property on the inArgs of the following actions…
	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values -
	0 - the host is rendering the instance due to some reason other than an interactive tweak on a UI,

	1 - the instance is being rendered because a user is modifying parameters in an interactive session.

This property is set to 1 on all render calls that have been triggered because a user is actively modifying an effect (or up stream effect) in an interactive session. This typically means that the effect is not being rendered as a part of a sequence, but as a single frame.

	
kOfxImageEffectPluginPropGrouping

	Indicates the effect group for this plugin.

	Type - UTF8 string X 1

	Property Set - plugin descriptor (read/write)

	Default - “”

This is purely a user interface hint for the host so it can group related effects on any menus it may have.

	
kOfxImageEffectPropSupportsOverlays

	Indicates whether a host support image effect ImageEffectOverlays.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - the host won’t allow a plugin to draw a GUI over the output image,

	1 - the host will allow a plugin to draw a GUI over the output image.

	
kOfxImageEffectPluginPropOverlayInteractV1

	Sets the entry for an effect’s overlay interaction.

	Type - pointer X 1

	Property Set - plugin descriptor (read/write)

	Default - NULL

	Valid Values - must point to an OfxPluginEntryPoint

The entry point pointed to must be one that handles custom interaction actions.

	
kOfxImageEffectPluginPropOverlayInteractV2

	Sets the entry for an effect’s overlay interaction. Unlike kOfxImageEffectPluginPropOverlayInteractV1, the overlay interact in the plug-in is expected to implement the kOfxInteractActionDraw using the OfxDrawSuiteV1.

	Type - pointer X 1

	Property Set - plugin descriptor (read/write)

	Default - NULL

	Valid Values - must point to an OfxPluginEntryPoint

The entry point pointed to must be one that handles custom interaction actions.

	
kOfxImageEffectPropSupportsMultiResolution

	Indicates whether a plugin or host support multiple resolution images.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - 1 for plugins

	Valid Values - This must be one of
	0 - the plugin or host does not support multiple resolutions

	1 - the plugin or host does support multiple resolutions

Multiple resolution images mean…
	input and output images can be of any size

	input and output images can be offset from the origin

	
kOfxImageEffectPropSupportsTiles

	Indicates whether a clip, plugin or host supports tiled images.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write), clip descriptor (read/write), instance (read/write)

	Default - to 1 for a plugin and clip

	Valid Values - This must be one of 0 or 1

Tiled images mean that input or output images can contain pixel data that is only a subset of their full RoD.

If a clip or plugin does not support tiled images, then the host should supply full RoD images to the effect whenever it fetches one.

V1.4: It is now possible (defined) to change OfxImageEffectPropSupportsTiles in Instance Changed

	
kOfxImageEffectPropTemporalClipAccess

	Indicates support for random temporal access to images in a clip.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write), clip descriptor (read/write)

	Default - to 0 for a plugin and clip

	Valid Values - This must be one of 0 or 1

On a host, it indicates whether the host supports temporal access to images.

On a plugin, indicates if the plugin needs temporal access to images.

On a clip, it indicates that the clip needs temporal access to images.

	
kOfxImageEffectPropContext

	Indicates the context a plugin instance has been created for.

	Type - string X 1

	Property Set - image effect instance (read only)

	Valid Values - This must be one of
	kOfxImageEffectContextGenerator

	kOfxImageEffectContextFilter

	kOfxImageEffectContextTransition

	kOfxImageEffectContextPaint

	kOfxImageEffectContextGeneral

	kOfxImageEffectContextRetimer

	
kOfxImageEffectPropPixelDepth

	Indicates the type of each component in a clip or image (after any mapping)

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only)

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

Note that for a clip, this is the value set by the clip preferences action, not the raw ‘actual’ value of the clip.

	
kOfxImageEffectPropComponents

	Indicates the current component type in a clip or image (after any mapping)

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only)

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected, not valid for an image)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

Note that for a clip, this is the value set by the clip preferences action, not the raw ‘actual’ value of the clip.

	
kOfxImagePropUniqueIdentifier

	Uniquely labels an image.

	Type - ASCII string X 1

	Property Set - image instance (read only)

This is host set and allows a plug-in to differentiate between images. This is especially useful if a plugin caches analysed information about the image (for example motion vectors). The plugin can label the cached information with this identifier. If a user connects a different clip to the analysed input, or the image has changed in some way then the plugin can detect this via an identifier change and re-evaluate the cached information.

	
kOfxImageClipPropContinuousSamples

	Clip and action argument property which indicates that the clip can be sampled continously.

	Type - int X 1

	Property Set - clip instance (read only), as an out argument to kOfxImageEffectActionGetClipPreferences action (read/write)

	Default - 0 as an out argument to the kOfxImageEffectActionGetClipPreferences action

	Valid Values - This must be one of…
	0 if the images can only be sampled at discreet times (eg: the clip is a sequence of frames),

	1 if the images can only be sampled continuously (eg: the clip is infact an animating roto spline and can be rendered anywhen).

If this is set to true, then the frame rate of a clip is effectively infinite, so to stop arithmetic errors the frame rate should then be set to 0.

	
kOfxImageClipPropUnmappedPixelDepth

	Indicates the type of each component in a clip before any mapping by clip preferences.

	Type - string X 1

	Property Set - clip instance (read only)

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

This is the actual value of the component depth, before any mapping by clip preferences.

	
kOfxImageClipPropUnmappedComponents

	Indicates the current ‘raw’ component type on a clip before any mapping by clip preferences.

	Type - string X 1

	Property Set - clip instance (read only),

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

	
kOfxImageEffectPropPreMultiplication

	Indicates the premultiplication state of a clip or image.

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only), out args property in the kOfxImageEffectActionGetClipPreferences action (read/write)

	Valid Values - This must be one of
	kOfxImageOpaque - the image is opaque and so has no premultiplication state

	kOfxImagePreMultiplied - the image is premultiplied by its alpha

	kOfxImageUnPreMultiplied - the image is unpremultiplied

See the documentation on clip preferences for more details on how this is used with the kOfxImageEffectActionGetClipPreferences action.

	
kOfxImageOpaque

	Used to flag the alpha of an image as opaque

	
kOfxImagePreMultiplied

	Used to flag an image as premultiplied

	
kOfxImageUnPreMultiplied

	Used to flag an image as unpremultiplied

	
kOfxImageEffectPropSupportedPixelDepths

	Indicates the bit depths support by a plug-in or host.

	Type - string X N

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - plugin descriptor none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

The default for a plugin is to have none set, the plugin must define at least one in its describe action.

	
kOfxImageEffectPropSupportedComponents

	Indicates the components supported by a clip or host,.

	Type - string X N

	Property Set - host descriptor (read only), clip descriptor (read/write)

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

This list of strings indicate what component types are supported by a host or are expected as input to a clip.

The default for a clip descriptor is to have none set, the plugin must define at least one in its define function

	
kOfxImageClipPropOptional

	Indicates if a clip is optional.

	Type - int X 1

	Property Set - clip descriptor (read/write)

	Default - 0

	Valid Values - This must be one of 0 or 1

	
kOfxImageClipPropIsMask

	Indicates that a clip is intended to be used as a mask input.

	Type - int X 1

	Property Set - clip descriptor (read/write)

	Default - 0

	Valid Values - This must be one of 0 or 1

Set this property on any clip which will only ever have single channel alpha images fetched from it. Typically on an optional clip such as a junk matte in a keyer.

This property acts as a hint to hosts indicating that they could feed the effect from a rotoshape (or similar) rather than an ‘ordinary’ clip.

	
kOfxImagePropPixelAspectRatio

	The pixel aspect ratio of a clip or image.

	Type - double X 1

	Property Set - clip instance (read only), image instance (read only) and kOfxImageEffectActionGetClipPreferences action out args property (read/write)

	
kOfxImageEffectPropFrameRate

	The frame rate of a clip or instance’s project.

	Type - double X 1

	Property Set - clip instance (read only), effect instance (read only) and kOfxImageEffectActionGetClipPreferences action out args property (read/write)

For an input clip this is the frame rate of the clip.

For an output clip, the frame rate mapped via pixel preferences.

For an instance, this is the frame rate of the project the effect is in.

For the outargs property in the kOfxImageEffectActionGetClipPreferences action, it is used to change the frame rate of the ouput clip.

	
kOfxImageEffectPropUnmappedFrameRate

	Indicates the original unmapped frame rate (frames/second) of a clip.

	Type - double X 1

	Property Set - clip instance (read only),

If a plugin changes the output frame rate in the pixel preferences action, this property allows a plugin to get to the original value.

	
kOfxImageEffectPropFrameStep

	The frame step used for a sequence of renders.

	Type - double X 1

	Property Set - an in argument for the kOfxImageEffectActionBeginSequenceRender action (read only)

	Valid Values - can be any positive value, but typically
	1 for frame based material

	0.5 for field based material

	
kOfxImageEffectPropFrameRange

	The frame range over which a clip has images.

	Type - double X 2

	Property Set - clip instance (read only)

Dimension 0 is the first frame for which the clip can produce valid data.

Dimension 1 is the last frame for which the clip can produce valid data.

	
kOfxImageEffectPropUnmappedFrameRange

	The unmaped frame range over which an output clip has images.

	Type - double X 2

	Property Set - clip instance (read only)

Dimension 0 is the first frame for which the clip can produce valid data.

Dimension 1 is the last frame for which the clip can produce valid data.

If a plugin changes the output frame rate in the pixel preferences action, it will affect the frame range of the output clip, this property allows a plugin to get to the original value.

	
kOfxImageClipPropConnected

	Says whether the clip is actually connected at the moment.

	Type - int X 1

	Property Set - clip instance (read only)

	Valid Values - This must be one of 0 or 1

An instance may have a clip may not be connected to an object that can produce image data. Use this to find out.

Any clip that is not optional will always be connected during a render action. However, during interface actions, even non optional clips may be unconnected.

	
kOfxImageEffectFrameVarying

	Indicates whether an effect will generate different images from frame to frame.

	Type - int X 1

	Property Set - out argument to kOfxImageEffectActionGetClipPreferences action (read/write).

	Default - 0

	Valid Values - This must be one of 0 or 1

This property indicates whether a plugin will generate a different image from frame to frame, even if no parameters or input image changes. For example a generater that creates random noise pixel at each frame.

	
kOfxImageEffectPropRenderScale

	The proxy render scale currently being applied.

	Type - double X 2

	Property Set - an image instance (read only) and as read only an in argument on the following actions,
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	kOfxImageEffectActionIsIdentity

	kOfxImageEffectActionGetRegionOfDefinition

	kOfxImageEffectActionGetRegionsOfInterest

	kOfxActionInstanceChanged

	kOfxInteractActionDraw

	kOfxInteractActionPenMotion

	kOfxInteractActionPenDown

	kOfxInteractActionPenUp

	kOfxInteractActionKeyDown

	kOfxInteractActionKeyUp

	kOfxInteractActionKeyRepeat

	kOfxInteractActionGainFocus

	kOfxInteractActionLoseFocus

This should be applied to any spatial parameters to position them correctly. Not that the ‘x’ value does not include any pixel aspect ratios.

	
kOfxImageEffectPropRenderQualityDraft

	Indicates whether an effect can take quality shortcuts to improve speed.

	Type - int X 1

	Property Set - render calls, host (read-only)

	Default - 0 - 0: Best Quality (1: Draft)

	Valid Values - This must be one of 0 or 1

This property indicates that the host provides the plug-in the option to render in Draft/Preview mode. This is useful for applications that must support fast scrubbing. These allow a plug-in to take short-cuts for improved performance when the situation allows and it makes sense, for example to generate thumbnails with effects applied. For example switch to a cheaper interpolation type or rendering mode. A plugin should expect frames rendered in this manner that will not be stucked in host cache unless the cache is only used in the same draft situations. If an host does not support that property a value of 0 is assumed. Also note that some hosts do implement kOfxImageEffectPropRenderScale - these two properties can be used independently.

	
kOfxImageEffectPropProjectExtent

	The extent of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The extent is the size of the ‘output’ for the current project. See NormalisedCoordinateSystem for more infomation on the project extent.

The extent is in canonical coordinates and only returns the top right position, as the extent is always rooted at 0,0.

For example a PAL SD project would have an extent of 768, 576.

	
kOfxImageEffectPropProjectSize

	The size of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The size of a project is a sub set of the kOfxImageEffectPropProjectExtent. For example a project may be a PAL SD project, but only be a letter-box within that. The project size is the size of this sub window.

The project size is in canonical coordinates.

See NormalisedCoordinateSystem for more infomation on the project extent.

	
kOfxImageEffectPropProjectOffset

	The offset of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The offset is related to the kOfxImageEffectPropProjectSize and is the offset from the origin of the project ‘subwindow’.

For example for a PAL SD project that is in letterbox form, the project offset is the offset to the bottom left hand corner of the letter box.

The project offset is in canonical coordinates.

See NormalisedCoordinateSystem for more infomation on the project extent.

	
kOfxImageEffectPropProjectPixelAspectRatio

	The pixel aspect ratio of the current project.

	Type - double X 1

	Property Set - a plugin instance (read only)

	
kOfxImageEffectInstancePropEffectDuration

	The duration of the effect.

	Type - double X 1

	Property Set - a plugin instance (read only)

This contains the duration of the plug-in effect, in frames.

	
kOfxImageClipPropFieldOrder

	Which spatial field occurs temporally first in a frame.

	Type - string X 1

	Property Set - a clip instance (read only)

	Valid Values - This must be one of
	kOfxImageFieldNone - the material is unfielded

	kOfxImageFieldLower - the material is fielded, with image rows 0,2,4…. occuring first in a frame

	kOfxImageFieldUpper - the material is fielded, with image rows line 1,3,5…. occuring first in a frame

	
kOfxImagePropData

	The pixel data pointer of an image.

	Type - pointer X 1

	Property Set - an image instance (read only)

This property contains one of:
	a pointer to memory that is the lower left hand corner of an image

	a pointer to Cuda memory, if the Render action arguments includes kOfxImageEffectPropCudaEnabled=1

	an id<MTLBuffer>, if the Render action arguments includes kOfxImageEffectPropMetalEnabled=1

	a cl_mem, if the Render action arguments includes kOfxImageEffectPropOpenCLEnabled=1

See kOfxImageEffectPropCudaEnabled, kOfxImageEffectPropMetalEnabled and kOfxImageEffectPropOpenCLEnabled

	
kOfxImagePropBounds

	The bounds of an image’s pixels.

	Type - integer X 4

	Property Set - an image instance (read only)

The bounds, in PixelCoordinates, are of the addressable pixels in an image’s data pointer.

The order of the values is x1, y1, x2, y2.

X values are x1 <= X < x2 Y values are y1 <= Y < y2

For less than full frame images, the pixel bounds will be contained by the kOfxImagePropRegionOfDefinition bounds.

	
kOfxImagePropRegionOfDefinition

	The full region of definition of an image.

	Type - integer X 4

	Property Set - an image instance (read only)

An image’s region of definition, in PixelCoordinates, is the full frame area of the image plane that the image covers.

The order of the values is x1, y1, x2, y2.

X values are x1 <= X < x2 Y values are y1 <= Y < y2

The kOfxImagePropBounds property contains the actuall addressable pixels in an image, which may be less than its full region of definition.

	
kOfxImagePropRowBytes

	The number of bytes in a row of an image.

	Type - integer X 1

	Property Set - an image instance (read only)

For various alignment reasons, a row of pixels may need to be padded at the end with several bytes before the next row starts in memory.

This property indicates the number of bytes in a row of pixels. This will be at least sizeof(PIXEL) * (bounds.x2-bounds.x1). Where bounds is fetched from the kOfxImagePropBounds property.

Note that (for CPU images only, not Cuda/Metal/OpenCL buffers, nor textures accessed via the OpenGL Render Suite) row bytes can be negative, which allows hosts with a native top down row order to pass image into OFX without having to repack pixels.

	
kOfxImagePropField

	Which fields are present in the image.

	Type - string X 1

	Property Set - an image instance (read only)

	Valid Values - This must be one of
	kOfxImageFieldNone - the image is an unfielded frame

	kOfxImageFieldBoth - the image is fielded and contains both interlaced fields

	kOfxImageFieldLower - the image is fielded and contains a single field, being the lower field (rows 0,2,4…)

	kOfxImageFieldUpper - the image is fielded and contains a single field, being the upper field (rows 1,3,5…)

	
kOfxImageEffectPluginPropFieldRenderTwiceAlways

	Controls how a plugin renders fielded footage.

	Type - integer X 1

	Property Set - a plugin descriptor (read/write)

	Default - 1

	Valid Values - This must be one of
	0 - the plugin is to have its render function called twice, only if there is animation in any of its parameters

	1 - the plugin is to have its render function called twice always

	
kOfxImageClipPropFieldExtraction

	Controls how a plugin fetched fielded imagery from a clip.

	Type - string X 1

	Property Set - a clip descriptor (read/write)

	Default - kOfxImageFieldDoubled

	Valid Values - This must be one of
	kOfxImageFieldBoth - fetch a full frame interlaced image

	kOfxImageFieldSingle - fetch a single field, making a half height image

	kOfxImageFieldDoubled - fetch a single field, but doubling each line and so making a full height image

This controls how a plug-in wishes to fetch images from a fielded clip, so it can tune it behaviour when it renders fielded footage.

Note that if it fetches kOfxImageFieldSingle and the host stores images natively as both fields interlaced, it can return a single image by doubling rowbytes and tweaking the starting address of the image data. This saves on a buffer copy.

	
kOfxImageEffectPropFieldToRender

	Indicates which field is being rendered.

	Type - string X 1

	Property Set - a read only in argument property to kOfxImageEffectActionRender and kOfxImageEffectActionIsIdentity

	Valid Values - this must be one of
	kOfxImageFieldNone - there are no fields to deal with, all images are full frame

	kOfxImageFieldBoth - the imagery is fielded and both scan lines should be renderred

	kOfxImageFieldLower - the lower field is being rendered (lines 0,2,4…)

	kOfxImageFieldUpper - the upper field is being rendered (lines 1,3,5…)

	
kOfxImageEffectPropRegionOfDefinition

	Used to indicate the region of definition of a plug-in.

	Type - double X 4

	Property Set - a read/write out argument property to the kOfxImageEffectActionGetRegionOfDefinition action

	Default - see kOfxImageEffectActionGetRegionOfDefinition

The order of the values is x1, y1, x2, y2.

This will be in CanonicalCoordinates

	
kOfxImageEffectPropRegionOfInterest

	The value of a region of interest.

	Type - double X 4

	Property Set - a read only in argument property to the kOfxImageEffectActionGetRegionsOfInterest action

A host passes this value into the region of interest action to specify the region it is interested in rendering.

The order of the values is x1, y1, x2, y2.

This will be in CanonicalCoordinates.

	
kOfxImageEffectPropRenderWindow

	The region to be rendered.

	Type - integer X 4

	Property Set - a read only in argument property to the kOfxImageEffectActionRender and kOfxImageEffectActionIsIdentity actions

The order of the values is x1, y1, x2, y2.

This will be in PixelCoordinates

	
kOfxImageFieldNone

	String used to label imagery as having no fields

	
kOfxImageFieldLower

	String used to label the lower field (scan lines 0,2,4…) of fielded imagery

	
kOfxImageFieldUpper

	String used to label the upper field (scan lines 1,3,5…) of fielded imagery

	
kOfxImageFieldBoth

	String used to label both fields of fielded imagery, indicating interlaced footage

	
kOfxImageFieldSingle

	String used to label an image that consists of a single field, and so is half height

	
kOfxImageFieldDoubled

	String used to label an image that consists of a single field, but each scan line is double, and so is full height

	
kOfxImageEffectOutputClipName

	String that is the name of the standard OFX output clip.

	
kOfxImageEffectSimpleSourceClipName

	String that is the name of the standard OFX single source input clip.

	
kOfxImageEffectTransitionSourceFromClipName

	String that is the name of the ‘from’ clip in the OFX transition context.

	
kOfxImageEffectTransitionSourceToClipName

	String that is the name of the ‘from’ clip in the OFX transition context.

	
kOfxImageEffectTransitionParamName

	the name of the mandated ‘Transition’ param for the transition context

	
kOfxImageEffectRetimerParamName

	the name of the mandated ‘SourceTime’ param for the retime context

	
kOfxImageEffectSuite

	the string that names image effect suites, passed to OfxHost::fetchSuite

	
kOfxStatErrImageFormat

	Error code for incorrect image formats.

Typedefs

	
typedef struct OfxImageEffectStruct *OfxImageEffectHandle

	Blind declaration of an OFX image effect.

	
typedef struct OfxImageClipStruct *OfxImageClipHandle

	Blind declaration of an OFX image effect.

	
typedef struct OfxImageMemoryStruct *OfxImageMemoryHandle

	Blind declaration for an handle to image memory returned by the image memory management routines.

	
typedef struct OfxImageEffectSuiteV1 OfxImageEffectSuiteV1

	The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

	
file ofxInteract.h

	
#include “ofxCore.h”

Contains the API for ofx plugin defined GUIs and interaction.

Defines

	
kOfxInteractSuite

	

	
kOfxInteractPropSlaveToParam

	The set of parameters on which a value change will trigger a redraw for an interact.

	Type - string X N

	Property Set - interact instance property (read/write)

	Default - no values set

	Valid Values - the name of any parameter associated with this interact.

If the interact is representing the state of some set of OFX parameters, then is will need to be redrawn if any of those parameters’ values change. This multi-dimensional property links such parameters to the interact.

The interact can be slaved to multiple parameters (setting index 0, then index 1 etc…)

	
kOfxInteractPropPixelScale

	The size of a real screen pixel under the interact’s canonical projection.

	Type - double X 2

	Property Set - interact instance and actions (read only)

	
kOfxInteractPropBackgroundColour

	The background colour of the application behind an interact instance.

	Type - double X 3

	Property Set - read only on the interact instance and in argument to the kOfxInteractActionDraw action

	Valid Values - from 0 to 1

The components are in the order red, green then blue.

	
kOfxInteractPropSuggestedColour

	The suggested colour to draw a widget in an interact, typically for overlays.

	Type - double X 3

	Property Set - read only on the interact instance

	Default - 1.0

	Valid Values - greater than or equal to 0.0

Some applications allow the user to specify colours of any overlay via a colour picker, this property represents the value of that colour. Plugins are at liberty to use this or not when they draw an overlay.

If a host does not support such a colour, it should return kOfxStatReplyDefault

	
kOfxInteractPropPenPosition

	The position of the pen in an interact.

	Type - double X 2

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

This value passes the postion of the pen into an interact. This is in the interact’s canonical coordinates.

	
kOfxInteractPropPenViewportPosition

	The position of the pen in an interact in viewport coordinates.

	Type - int X 2

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

This value passes the postion of the pen into an interact. This is in the interact’s openGL viewport coordinates, with 0,0 being at the bottom left.

	
kOfxInteractPropPenPressure

	The pressure of the pen in an interact.

	Type - double X 1

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

	Valid Values - from 0 (no pressure) to 1 (maximum pressure)

This is used to indicate the status of the ‘pen’ in an interact. If a pen has only two states (eg: a mouse button), these should map to 0.0 and 1.0.

	
kOfxInteractPropBitDepth

	Indicates whether the dits per component in the interact’s openGL frame buffer.

	Type - int X 1

	Property Set - interact instance and descriptor (read only)

	
kOfxInteractPropHasAlpha

	Indicates whether the interact’s frame buffer has an alpha component or not.

	Type - int X 1

	Property Set - interact instance and descriptor (read only)

	Valid Values - This must be one of
	0 indicates no alpha component

	1 indicates an alpha component

	
kOfxActionDescribeInteract

	This action is the first action passed to an interact. It is where an interact defines how it behaves and the resources it needs to function. If not trapped, the default action is for the host to carry on as normal Note that the handle passed in acts as a descriptor for, rather than an instance of the interact.

	Parameters:

	
	handle – handle to the interact descriptor, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	The plugin has been loaded and the effect described.

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatErrMemory in which case describe may be called again after a memory purge

	kOfxStatFailed something was wrong, the host should ignore the interact

	kOfxStatErrFatal

	
kOfxActionCreateInstanceInteract

	This action is the first action passed to an interact instance after its creation. It is there to allow a plugin to create any per-instance data structures it may need.

	Parameters:

	
	handle – handle to the interact instance, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called on this interact

	Post:

	
	the instance pointer will be valid until the kOfxActionDestroyInstance action is passed to the plug-in with the same instance handle

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored, but all was well anyway

	kOfxStatErrFatal

	kOfxStatErrMemory in which case this may be called again after a memory purge

	kOfxStatFailed in which case the host should ignore this interact

	
kOfxActionDestroyInstanceInteract

	This action is the last passed to an interact’s instance before its destruction. It is there to allow a plugin to destroy any per-instance data structures it may have created.

	Parameters:

	
	handle – handle to the interact instance, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the handle,

	the instance has not had any of its members destroyed yet

	Post:

	
	the instance pointer is no longer valid and any operation on it will be undefined

	Returns:

	To some extent, what is returned is moot, a bit like throwing an exception in a C++ destructor, so the host should continue destruction of the instance regardless
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored as the effect had nothing to do

	kOfxStatErrFatal

	kOfxStatFailed something went wrong, but no error code appropriate.

	
kOfxInteractActionDraw

	This action is issued to an interact whenever the host needs the plugin to redraw the given interact.

The interact should either issue OpenGL calls to draw itself, or use DrawSuite calls.

If this is called via kOfxImageEffectPluginPropOverlayInteractV2, drawing MUST use DrawSuite.

If this is called via kOfxImageEffectPluginPropOverlayInteractV1, drawing SHOULD use OpenGL. Some existing plugins may use DrawSuite via kOfxImageEffectPluginPropOverlayInteractV1 if it’s supported by the host, but this is discouraged.

Note that the interact may (in the case of custom parameter GUIS) or may not (in the case of image effect overlays) be required to swap buffers, that is up to the kind of interact.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle

	the openGL context for this interact has been set

	the projection matrix will correspond to the interact’s cannonical view

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored

	kOfxStatErrFatal

	kOfxStatFailed something went wrong, the host should ignore this interact in future

	
kOfxInteractActionPenMotion

	This action is issued whenever the pen moves an the interact’s has focus. It should be issued whether the pen is currently up or down. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition postion of the pen in,

	kOfxInteractPropPenViewportPosition position of the pen in,

	kOfxInteractPropPenPressure the pressure of the pen,

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionPenDown

	This action is issued when a pen transitions for the ‘up’ to the ‘down’ state. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin,
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition position of the pen in

	kOfxInteractPropPenViewportPosition position of the pen in

	kOfxInteractPropPenPressure the pressure of the pen

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK, the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionPenUp

	This action is issued when a pen transitions for the ‘down’ to the ‘up’ state. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin,
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition position of the pen in

	kOfxInteractPropPenViewportPosition position of the pen in

	kOfxInteractPropPenPressure the pressure of the pen

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK, the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyDown

	This action is issued when a key on the keyboard is depressed. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyUp

	This action is issued when a key on the keyboard is released. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyRepeat

	This action is issued when a key on the keyboard is repeated. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionGainFocus

	This action is issued when an interact gains input focus. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact is being used on,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels,

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK the action was trapped

	kOfxStatReplyDefault the action was not trapped

	
kOfxInteractActionLoseFocus

	This action is issued when an interact loses input focus. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact is being used on,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels,

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK the action was trapped

	kOfxStatReplyDefault the action was not trapped

Typedefs

	
typedef struct OfxInteract *OfxInteractHandle

	Blind declaration of an OFX interactive gui.

	
typedef struct OfxInteractSuiteV1 OfxInteractSuiteV1

	OFX suite that allows an effect to interact with an openGL window so as to provide custom interfaces.

	
file ofxKeySyms.h

	
Defines

	
kOfxPropKeySym

	Property used to indicate which a key on the keyboard or a button on a button device has been pressed.

	Type - int X 1

	Property Set - an read only in argument for the actions kOfxInteractActionKeyDown, kOfxInteractActionKeyUp and kOfxInteractActionKeyRepeat.

	Valid Values - one of any specified by #defines in the file ofxKeySyms.h.

This property represents a raw key press, it does not represent the ‘character value’ of the key.

This property is associated with a kOfxPropKeyString property, which encodes the UTF8 value for the keypress/button press. Some keys (for example arrow keys) have no UTF8 equivalant.

Some keys, especially on non-english language systems, may have a UTF8 value, but not a keysym values, in these cases, the keysym will have a value of kOfxKey_Unknown, but the kOfxPropKeyString property will still be set with the UTF8 value.

	
kOfxPropKeyString

	This property encodes a single keypresses that generates a unicode code point. The value is stored as a UTF8 string.

	Type - C string X 1, UTF8

	Property Set - an read only in argument for the actions kOfxInteractActionKeyDown, kOfxInteractActionKeyUp and kOfxInteractActionKeyRepeat.

	Valid Values - a UTF8 string representing a single character, or the empty string.

This property represents the UTF8 encode value of a single key press by a user in an OFX interact.

This property is associated with a kOfxPropKeySym which represents an integer value for the key press. Some keys (for example arrow keys) have no UTF8 equivalant, in which case this is set to the empty string “”, and the associate kOfxPropKeySym is set to the equivilant raw key press.

Some keys, especially on non-english language systems, may have a UTF8 value, but not a keysym values, in these cases, the keysym will have a value of kOfxKey_Unknown, but the kOfxPropKeyString property will still be set with the UTF8 value.

	
kOfxKey_Unknown

	

	
kOfxKey_BackSpace

	

	
kOfxKey_Tab

	

	
kOfxKey_Linefeed

	

	
kOfxKey_Clear

	

	
kOfxKey_Return

	

	
kOfxKey_Pause

	

	
kOfxKey_Scroll_Lock

	

	
kOfxKey_Sys_Req

	

	
kOfxKey_Escape

	

	
kOfxKey_Delete

	

	
kOfxKey_Multi_key

	

	
kOfxKey_SingleCandidate

	

	
kOfxKey_MultipleCandidate

	

	
kOfxKey_PreviousCandidate

	

	
kOfxKey_Kanji

	

	
kOfxKey_Muhenkan

	

	
kOfxKey_Henkan_Mode

	

	
kOfxKey_Henkan

	

	
kOfxKey_Romaji

	

	
kOfxKey_Hiragana

	

	
kOfxKey_Katakana

	

	
kOfxKey_Hiragana_Katakana

	

	
kOfxKey_Zenkaku

	

	
kOfxKey_Hankaku

	

	
kOfxKey_Zenkaku_Hankaku

	

	
kOfxKey_Touroku

	

	
kOfxKey_Massyo

	

	
kOfxKey_Kana_Lock

	

	
kOfxKey_Kana_Shift

	

	
kOfxKey_Eisu_Shift

	

	
kOfxKey_Eisu_toggle

	

	
kOfxKey_Zen_Koho

	

	
kOfxKey_Mae_Koho

	

	
kOfxKey_Home

	

	
kOfxKey_Left

	

	
kOfxKey_Up

	

	
kOfxKey_Right

	

	
kOfxKey_Down

	

	
kOfxKey_Prior

	

	
kOfxKey_Page_Up

	

	
kOfxKey_Next

	

	
kOfxKey_Page_Down

	

	
kOfxKey_End

	

	
kOfxKey_Begin

	

	
kOfxKey_Select

	

	
kOfxKey_Print

	

	
kOfxKey_Execute

	

	
kOfxKey_Insert

	

	
kOfxKey_Undo

	

	
kOfxKey_Redo

	

	
kOfxKey_Menu

	

	
kOfxKey_Find

	

	
kOfxKey_Cancel

	

	
kOfxKey_Help

	

	
kOfxKey_Break

	

	
kOfxKey_Mode_switch

	

	
kOfxKey_script_switch

	

	
kOfxKey_Num_Lock

	

	
kOfxKey_KP_Space

	

	
kOfxKey_KP_Tab

	

	
kOfxKey_KP_Enter

	

	
kOfxKey_KP_F1

	

	
kOfxKey_KP_F2

	

	
kOfxKey_KP_F3

	

	
kOfxKey_KP_F4

	

	
kOfxKey_KP_Home

	

	
kOfxKey_KP_Left

	

	
kOfxKey_KP_Up

	

	
kOfxKey_KP_Right

	

	
kOfxKey_KP_Down

	

	
kOfxKey_KP_Prior

	

	
kOfxKey_KP_Page_Up

	

	
kOfxKey_KP_Next

	

	
kOfxKey_KP_Page_Down

	

	
kOfxKey_KP_End

	

	
kOfxKey_KP_Begin

	

	
kOfxKey_KP_Insert

	

	
kOfxKey_KP_Delete

	

	
kOfxKey_KP_Equal

	

	
kOfxKey_KP_Multiply

	

	
kOfxKey_KP_Add

	

	
kOfxKey_KP_Separator

	

	
kOfxKey_KP_Subtract

	

	
kOfxKey_KP_Decimal

	

	
kOfxKey_KP_Divide

	

	
kOfxKey_KP_0

	

	
kOfxKey_KP_1

	

	
kOfxKey_KP_2

	

	
kOfxKey_KP_3

	

	
kOfxKey_KP_4

	

	
kOfxKey_KP_5

	

	
kOfxKey_KP_6

	

	
kOfxKey_KP_7

	

	
kOfxKey_KP_8

	

	
kOfxKey_KP_9

	

	
kOfxKey_F1

	

	
kOfxKey_F2

	

	
kOfxKey_F3

	

	
kOfxKey_F4

	

	
kOfxKey_F5

	

	
kOfxKey_F6

	

	
kOfxKey_F7

	

	
kOfxKey_F8

	

	
kOfxKey_F9

	

	
kOfxKey_F10

	

	
kOfxKey_F11

	

	
kOfxKey_L1

	

	
kOfxKey_F12

	

	
kOfxKey_L2

	

	
kOfxKey_F13

	

	
kOfxKey_L3

	

	
kOfxKey_F14

	

	
kOfxKey_L4

	

	
kOfxKey_F15

	

	
kOfxKey_L5

	

	
kOfxKey_F16

	

	
kOfxKey_L6

	

	
kOfxKey_F17

	

	
kOfxKey_L7

	

	
kOfxKey_F18

	

	
kOfxKey_L8

	

	
kOfxKey_F19

	

	
kOfxKey_L9

	

	
kOfxKey_F20

	

	
kOfxKey_L10

	

	
kOfxKey_F21

	

	
kOfxKey_R1

	

	
kOfxKey_F22

	

	
kOfxKey_R2

	

	
kOfxKey_F23

	

	
kOfxKey_R3

	

	
kOfxKey_F24

	

	
kOfxKey_R4

	

	
kOfxKey_F25

	

	
kOfxKey_R5

	

	
kOfxKey_F26

	

	
kOfxKey_R6

	

	
kOfxKey_F27

	

	
kOfxKey_R7

	

	
kOfxKey_F28

	

	
kOfxKey_R8

	

	
kOfxKey_F29

	

	
kOfxKey_R9

	

	
kOfxKey_F30

	

	
kOfxKey_R10

	

	
kOfxKey_F31

	

	
kOfxKey_R11

	

	
kOfxKey_F32

	

	
kOfxKey_R12

	

	
kOfxKey_F33

	

	
kOfxKey_R13

	

	
kOfxKey_F34

	

	
kOfxKey_R14

	

	
kOfxKey_F35

	

	
kOfxKey_R15

	

	
kOfxKey_Shift_L

	

	
kOfxKey_Shift_R

	

	
kOfxKey_Control_L

	

	
kOfxKey_Control_R

	

	
kOfxKey_Caps_Lock

	

	
kOfxKey_Shift_Lock

	

	
kOfxKey_Meta_L

	

	
kOfxKey_Meta_R

	

	
kOfxKey_Alt_L

	

	
kOfxKey_Alt_R

	

	
kOfxKey_Super_L

	

	
kOfxKey_Super_R

	

	
kOfxKey_Hyper_L

	

	
kOfxKey_Hyper_R

	

	
kOfxKey_space

	

	
kOfxKey_exclam

	

	
kOfxKey_quotedbl

	

	
kOfxKey_numbersign

	

	
kOfxKey_dollar

	

	
kOfxKey_percent

	

	
kOfxKey_ampersand

	

	
kOfxKey_apostrophe

	

	
kOfxKey_quoteright

	

	
kOfxKey_parenleft

	

	
kOfxKey_parenright

	

	
kOfxKey_asterisk

	

	
kOfxKey_plus

	

	
kOfxKey_comma

	

	
kOfxKey_minus

	

	
kOfxKey_period

	

	
kOfxKey_slash

	

	
kOfxKey_0

	

	
kOfxKey_1

	

	
kOfxKey_2

	

	
kOfxKey_3

	

	
kOfxKey_4

	

	
kOfxKey_5

	

	
kOfxKey_6

	

	
kOfxKey_7

	

	
kOfxKey_8

	

	
kOfxKey_9

	

	
kOfxKey_colon

	

	
kOfxKey_semicolon

	

	
kOfxKey_less

	

	
kOfxKey_equal

	

	
kOfxKey_greater

	

	
kOfxKey_question

	

	
kOfxKey_at

	

	
kOfxKey_A

	

	
kOfxKey_B

	

	
kOfxKey_C

	

	
kOfxKey_D

	

	
kOfxKey_E

	

	
kOfxKey_F

	

	
kOfxKey_G

	

	
kOfxKey_H

	

	
kOfxKey_I

	

	
kOfxKey_J

	

	
kOfxKey_K

	

	
kOfxKey_L

	

	
kOfxKey_M

	

	
kOfxKey_N

	

	
kOfxKey_O

	

	
kOfxKey_P

	

	
kOfxKey_Q

	

	
kOfxKey_R

	

	
kOfxKey_S

	

	
kOfxKey_T

	

	
kOfxKey_U

	

	
kOfxKey_V

	

	
kOfxKey_W

	

	
kOfxKey_X

	

	
kOfxKey_Y

	

	
kOfxKey_Z

	

	
kOfxKey_bracketleft

	

	
kOfxKey_backslash

	

	
kOfxKey_bracketright

	

	
kOfxKey_asciicircum

	

	
kOfxKey_underscore

	

	
kOfxKey_grave

	

	
kOfxKey_quoteleft

	

	
kOfxKey_a

	

	
kOfxKey_b

	

	
kOfxKey_c

	

	
kOfxKey_d

	

	
kOfxKey_e

	

	
kOfxKey_f

	

	
kOfxKey_g

	

	
kOfxKey_h

	

	
kOfxKey_i

	

	
kOfxKey_j

	

	
kOfxKey_k

	

	
kOfxKey_l

	

	
kOfxKey_m

	

	
kOfxKey_n

	

	
kOfxKey_o

	

	
kOfxKey_p

	

	
kOfxKey_q

	

	
kOfxKey_r

	

	
kOfxKey_s

	

	
kOfxKey_t

	

	
kOfxKey_u

	

	
kOfxKey_v

	

	
kOfxKey_w

	

	
kOfxKey_x

	

	
kOfxKey_y

	

	
kOfxKey_z

	

	
kOfxKey_braceleft

	

	
kOfxKey_bar

	

	
kOfxKey_braceright

	

	
kOfxKey_asciitilde

	

	
kOfxKey_nobreakspace

	

	
kOfxKey_exclamdown

	

	
kOfxKey_cent

	

	
kOfxKey_sterling

	

	
kOfxKey_currency

	

	
kOfxKey_yen

	

	
kOfxKey_brokenbar

	

	
kOfxKey_section

	

	
kOfxKey_diaeresis

	

	
kOfxKey_copyright

	

	
kOfxKey_ordfeminine

	

	
kOfxKey_guillemotleft

	

	
kOfxKey_notsign

	

	
kOfxKey_hyphen

	

	
kOfxKey_registered

	

	
kOfxKey_macron

	

	
kOfxKey_degree

	

	
kOfxKey_plusminus

	

	
kOfxKey_twosuperior

	

	
kOfxKey_threesuperior

	

	
kOfxKey_acute

	

	
kOfxKey_mu

	

	
kOfxKey_paragraph

	

	
kOfxKey_periodcentered

	

	
kOfxKey_cedilla

	

	
kOfxKey_onesuperior

	

	
kOfxKey_masculine

	

	
kOfxKey_guillemotright

	

	
kOfxKey_onequarter

	

	
kOfxKey_onehalf

	

	
kOfxKey_threequarters

	

	
kOfxKey_questiondown

	

	
kOfxKey_Agrave

	

	
kOfxKey_Aacute

	

	
kOfxKey_Acircumflex

	

	
kOfxKey_Atilde

	

	
kOfxKey_Adiaeresis

	

	
kOfxKey_Aring

	

	
kOfxKey_AE

	

	
kOfxKey_Ccedilla

	

	
kOfxKey_Egrave

	

	
kOfxKey_Eacute

	

	
kOfxKey_Ecircumflex

	

	
kOfxKey_Ediaeresis

	

	
kOfxKey_Igrave

	

	
kOfxKey_Iacute

	

	
kOfxKey_Icircumflex

	

	
kOfxKey_Idiaeresis

	

	
kOfxKey_ETH

	

	
kOfxKey_Eth

	

	
kOfxKey_Ntilde

	

	
kOfxKey_Ograve

	

	
kOfxKey_Oacute

	

	
kOfxKey_Ocircumflex

	

	
kOfxKey_Otilde

	

	
kOfxKey_Odiaeresis

	

	
kOfxKey_multiply

	

	
kOfxKey_Ooblique

	

	
kOfxKey_Ugrave

	

	
kOfxKey_Uacute

	

	
kOfxKey_Ucircumflex

	

	
kOfxKey_Udiaeresis

	

	
kOfxKey_Yacute

	

	
kOfxKey_THORN

	

	
kOfxKey_ssharp

	

	
kOfxKey_agrave

	

	
kOfxKey_aacute

	

	
kOfxKey_acircumflex

	

	
kOfxKey_atilde

	

	
kOfxKey_adiaeresis

	

	
kOfxKey_aring

	

	
kOfxKey_ae

	

	
kOfxKey_ccedilla

	

	
kOfxKey_egrave

	

	
kOfxKey_eacute

	

	
kOfxKey_ecircumflex

	

	
kOfxKey_ediaeresis

	

	
kOfxKey_igrave

	

	
kOfxKey_iacute

	

	
kOfxKey_icircumflex

	

	
kOfxKey_idiaeresis

	

	
kOfxKey_eth

	

	
kOfxKey_ntilde

	

	
kOfxKey_ograve

	

	
kOfxKey_oacute

	

	
kOfxKey_ocircumflex

	

	
kOfxKey_otilde

	

	
kOfxKey_odiaeresis

	

	
kOfxKey_division

	

	
kOfxKey_oslash

	

	
kOfxKey_ugrave

	

	
kOfxKey_uacute

	

	
kOfxKey_ucircumflex

	

	
kOfxKey_udiaeresis

	

	
kOfxKey_yacute

	

	
kOfxKey_thorn

	

	
kOfxKey_ydiaeresis

	

	
file ofxMemory.h

	This file contains the API for general purpose memory allocation from a host.

Defines

	
kOfxMemorySuite

	

Typedefs

	
typedef struct OfxMemorySuiteV1 OfxMemorySuiteV1

	The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

	
file ofxMessage.h

	
#include “ofxCore.h”

This file contains the Host API for end user message communication.

Defines

	
kOfxMessageSuite

	

	
kOfxMessageFatal

	String used to type fatal error messages.

Fatal error messages should only be posted by a plugin when it can no longer continue operation.

	
kOfxMessageError

	String used to type error messages.

Ordinary error messages should be posted when there is an error in operation that is recoverable by user intervention.

	
kOfxMessageWarning

	String used to type warning messages.

Warnings indicate states that allow for operations to proceed, but are not necessarily optimal.

	
kOfxMessageMessage

	String used to type simple ordinary messages.

Ordinary messages simply convey information from the plugin directly to the user.

	
kOfxMessageLog

	String used to type log messages.

Log messages are written out to a log and not to the end user.

	
kOfxMessageQuestion

	String used to type yes/no messages.

The host is to enter a modal state which waits for the user to respond yes or no. The OfxMessageSuiteV1::message function which posted the message will only return after the user responds. When asking a question, the OfxStatus code returned by the message function will be,
	kOfxStatReplyYes - if the user replied ‘yes’ to the question

	kOfxStatReplyNo - if the user replied ‘no’ to the question

	some error code if an error was encounterred

It is an error to post a question message if the plugin is not in an interactive session.

Typedefs

	
typedef struct OfxMessageSuiteV1 OfxMessageSuiteV1

	The OFX suite that allows a plug-in to pass messages back to a user. The V2 suite extends on this in a backwards compatible manner.

	
typedef struct OfxMessageSuiteV2 OfxMessageSuiteV2

	The OFX suite that allows a plug-in to pass messages back to a user.

This extends OfxMessageSuiteV1, and should be considered a replacement to version 1.

Note that this suite has been extended in backwards compatible manner, so that a host can return this struct for both V1 and V2.

	
file ofxMultiThread.h

	
#include “ofxCore.h”

This file contains the Host Suite for threading

Defines

	
kOfxMultiThreadSuite

	

Typedefs

	
typedef struct OfxMutex *OfxMutexHandle

	Mutex blind data handle.

	
void() OfxThreadFunctionV1 (unsigned int threadIndex, unsigned int threadMax, void *customArg)

	The function type to passed to the multi threading routines.

	threadIndex unique index of this thread, will be between 0 and threadMax

	threadMax to total number of threads executing this function

	customArg the argument passed into multiThread

A function of this type is passed to OfxMultiThreadSuiteV1::multiThread to be launched in multiple threads.

	
typedef struct OfxMultiThreadSuiteV1 OfxMultiThreadSuiteV1

	OFX suite that provides simple SMP style multi-processing.

	
file ofxOld.h

	
Defines

	
kOfxImageComponentYUVA

	String to label images with YUVA components —ofxImageEffects.h.

	
Deprecated:

	
	removed in v1.4. Note, this has been deprecated in v1.3

	
kOfxImageEffectPropInAnalysis

	Indicates whether an effect is performing an analysis pass. —ofxImageEffects.h.

	Type - int X 1

	Property Set - plugin instance (read/write)

	Default - to 0

	Valid Values - This must be one of 0 or 1

	
Deprecated:

	
	This feature has been deprecated - officially commented out v1.4.

	
kOfxInteractPropViewportSize

	The size of an interact’s openGL viewport — ofxInteract.h.

	Type - int X 2

	Property Set - read only property on the interact instance and in argument to all the interact actions.

	
Deprecated:

	
	V1.3: This property is the redundant and its use will be deprecated in future releases. V1.4: Removed

	
kOfxParamDoubleTypeNormalisedX

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeX V1.4: Removed

	
kOfxParamDoubleTypeNormalisedY

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeY V1.4: Removed

	
kOfxParamDoubleTypeNormalisedXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXAbsolute V1.4: Removed

	
kOfxParamDoubleTypeNormalisedYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeYAbsolute V1.4: Removed

	
kOfxParamDoubleTypeNormalisedXY

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for 2D params. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXY V1.4: Removed

	
kOfxParamDoubleTypeNormalisedXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for a 2D param that can be interpretted as an absolute spatial position. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of kOfxParamDoubleTypeXYAbsolute V1.4: Removed

Typedefs

	
typedef struct OfxYUVAColourB OfxYUVAColourB

	Defines an 8 bit per component YUVA pixel — ofxPixels.h Deprecated in 1.3, removed in 1.4.

	
typedef struct OfxYUVAColourS OfxYUVAColourS

	Defines an 16 bit per component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

	
typedef struct OfxYUVAColourF OfxYUVAColourF

	Defines an floating point component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

	
file ofxOpenGLRender.h

	
Defines

	
_ofxOpenGLRender_h_

	

	
file ofxParam.h

	
#include “ofxCore.h”

#include “ofxProperty.h”

This header contains the suite definition to manipulate host side parameters.

For more details go see ParametersPage

Defines

	
kOfxParameterSuite

	string value to the kOfxPropType property for all parameters

	
kOfxTypeParameter

	string value on the kOfxPropType property for all parameter definitions (ie: the handle returned in describe)

	
kOfxTypeParameterInstance

	string value on the kOfxPropType property for all parameter instances

	
kOfxParamTypeInteger

	String to identify a param as a single valued integer.

	
kOfxParamTypeDouble

	String to identify a param as a Single valued floating point parameter

	
kOfxParamTypeBoolean

	String to identify a param as a Single valued boolean parameter.

	
kOfxParamTypeChoice

	String to identify a param as a Single valued, ‘one-of-many’ parameter.

	
kOfxParamTypeRGBA

	String to identify a param as a Red, Green, Blue and Alpha colour parameter.

	
kOfxParamTypeRGB

	String to identify a param as a Red, Green and Blue colour parameter.

	
kOfxParamTypeDouble2D

	String to identify a param as a Two dimensional floating point parameter.

	
kOfxParamTypeInteger2D

	String to identify a param as a Two dimensional integer point parameter.

	
kOfxParamTypeDouble3D

	String to identify a param as a Three dimensional floating point parameter.

	
kOfxParamTypeInteger3D

	String to identify a param as a Three dimensional integer parameter.

	
kOfxParamTypeString

	String to identify a param as a String (UTF8) parameter.

	
kOfxParamTypeCustom

	String to identify a param as a Plug-in defined parameter.

	
kOfxParamTypeGroup

	String to identify a param as a Grouping parameter.

	
kOfxParamTypePage

	String to identify a param as a page parameter.

	
kOfxParamTypePushButton

	String to identify a param as a PushButton parameter.

	
kOfxParamHostPropSupportsCustomAnimation

	Indicates if the host supports animation of custom parameters.

	Type - int X 1

	Property Set - host descriptor (read only)

	Value Values - 0 or 1

	
kOfxParamHostPropSupportsStringAnimation

	Indicates if the host supports animation of string params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsBooleanAnimation

	Indicates if the host supports animation of boolean params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsChoiceAnimation

	Indicates if the host supports animation of choice params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsCustomInteract

	Indicates if the host supports custom interacts for parameters.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

Currently custom interacts for parameters can only be drawn using OpenGL. APIs will be added later to support using the new Draw Suite.

	
kOfxParamHostPropMaxParameters

	Indicates the maximum numbers of parameters available on the host.

	Type - int X 1

	Property Set - host descriptor (read only)

If set to -1 it implies unlimited number of parameters.

	
kOfxParamHostPropMaxPages

	Indicates the maximum number of parameter pages.

	Type - int X 1

	Property Set - host descriptor (read only)

If there is no limit to the number of pages on a host, set this to -1.

Hosts that do not support paged parameter layout should set this to zero.

	
kOfxParamHostPropPageRowColumnCount

	This indicates the number of parameter rows and coloumns on a page.

	Type - int X 2

	Property Set - host descriptor (read only)

If the host has supports paged parameter layout, used dimension 0 as the number of columns per page and dimension 1 as the number of rows per page.

	
kOfxParamPageSkipRow

	Pseudo parameter name used to skip a row in a page layout.

Passed as a value to the kOfxParamPropPageChild property.

See ParametersInterfacesPagedLayouts for more details.

	
kOfxParamPageSkipColumn

	Pseudo parameter name used to skip a row in a page layout.

Passed as a value to the kOfxParamPropPageChild property.

See ParametersInterfacesPagedLayouts for more details.

	
kOfxParamPropInteractV1

	Overrides the parameter’s standard user interface with the given interact.

	Type - pointer X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - NULL

	Valid Values - must point to a OfxPluginEntryPoint

If set, the parameter’s normal interface is replaced completely by the interact gui.

Currently custom interacts for parameters can only be drawn using OpenGL. APIs will be added later to support using the new Draw Suite.

	
kOfxParamPropInteractSize

	The size of a parameter instance’s custom interface in screen pixels.

	Type - double x 2

	Property Set - plugin parameter instance (read only)

This is set by a host to indicate the current size of a custom interface if the plug-in has one. If not this is set to (0,0).

	
kOfxParamPropInteractSizeAspect

	The preferred aspect ratio of a parameter’s custom interface.

	Type - double x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1.0

	Valid Values - greater than or equal to 0.0

If set to anything other than 0.0, the custom interface for this parameter will be of a size with this aspect ratio (x size/y size).

	
kOfxParamPropInteractMinimumSize

	The minimum size of a parameter’s custom interface, in screen pixels.

	Type - double x 2

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 10,10

	Valid Values - greater than (0, 0)

Any custom interface will not be less than this size.

	
kOfxParamPropInteractPreferedSize

	The preferred size of a parameter’s custom interface.

	Type - int x 2

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 10,10

	Valid Values - greater than (0, 0)

A host should attempt to set a parameter’s custom interface on a parameter to be this size if possible, otherwise it will be of kOfxParamPropInteractSizeAspect aspect but larger than kOfxParamPropInteractMinimumSize.

	
kOfxParamPropType

	The type of a parameter.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read only) and instance (read only)

This string will be set to the type that the parameter was create with.

	
kOfxParamPropAnimates

	Flags whether a parameter can animate.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

A plug-in uses this property to indicate if a parameter is able to animate.

	
kOfxParamPropCanUndo

	Flags whether changes to a parameter should be put on the undo/redo stack.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

	
kOfxPropParamSetNeedsSyncing

	States whether the plugin needs to resync its private data.

	Type - int X 1

	Property Set - param set instance (read/write)

	Default - 0

	Valid Values -
	0 - no need to sync

	1 - paramset is not synced

The plugin should set this flag to true whenever any internal state has not been flushed to the set of params.

The host will examine this property each time it does a copy or save operation on the instance. If it is set to 1, the host will call SyncPrivateData and then set it to zero before doing the copy/save. If it is set to 0, the host will assume that the param data correctly represents the private state, and will not call SyncPrivateData before copying/saving. If this property is not set, the host will always call SyncPrivateData before copying or saving the effect (as if the property were set to 1 — but the host will not create or modify the property).

	
kOfxParamPropIsAnimating

	Flags whether a parameter is currently animating.

	Type - int x 1

	Property Set - plugin parameter instance (read only)

	Valid Values - 0 or 1

Set by a host on a parameter instance to indicate if the parameter has a non-constant value set on it. This can be as a consequence of animation or of scripting modifying the value, or of a parameter being connected to an expression in the host.

	
kOfxParamPropPluginMayWrite

	Flags whether the plugin will attempt to set the value of a parameter in some callback or analysis pass.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 0

	Valid Values - 0 or 1

This is used to tell the host whether the plug-in is going to attempt to set the value of the parameter.

	
Deprecated:

	
	v1.4: deprecated - to be removed in 1.5

	
kOfxParamPropPersistant

	Flags whether the value of a parameter should persist.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

This is used to tell the host whether the value of the parameter is important and should be save in any description of the plug-in.

	
kOfxParamPropEvaluateOnChange

	Flags whether changing a parameter’s value forces an evalution (ie: render),.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write only)

	Default - 1

	Valid Values - 0 or 1

This is used to indicate if the value of a parameter has any affect on an effect’s output, eg: the parameter may be purely for GUI purposes, and so changing its value should not trigger a re-render.

	
kOfxParamPropSecret

	Flags whether a parameter should be exposed to a user,.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write)

	Default - 0

	Valid Values - 0 or 1

If secret, a parameter is not exposed to a user in any interface, but should otherwise behave as a normal parameter.

Secret params are typically used to hide important state detail that would otherwise be unintelligible to a user, for example the result of a statical analysis that might need many parameters to store.

	
kOfxParamPropScriptName

	The value to be used as the id of the parameter in a host scripting language.

	Type - ASCII C string X 1,

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - the unique name the parameter was created with.

	Valid Values - ASCII string unique to all parameters in the plug-in.

Many hosts have a scripting language that they use to set values of parameters and more. If so, this is the name of a parameter in such scripts.

	
kOfxParamPropCacheInvalidation

	Specifies how modifying the value of a param will affect any output of an effect over time.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - kOfxParamInvalidateValueChange

	Valid Values - This must be one of
	kOfxParamInvalidateValueChange

	kOfxParamInvalidateValueChangeToEnd

	kOfxParamInvalidateAll

Imagine an effect with an animating parameter in a host that caches rendered output. Think of the what happens when you add a new key frame. -If the parameter represents something like an absolute position, the cache will only need to be invalidated for the range of frames that keyframe affects.
	If the parameter represents something like a speed which is integrated, the cache will be invalidated from the keyframe until the end of the clip.

	There are potentially other situations where the entire cache will need to be invalidated (though I can’t think of one off the top of my head).

	
kOfxParamInvalidateValueChange

	Used as a value for the kOfxParamPropCacheInvalidation property.

	
kOfxParamInvalidateValueChangeToEnd

	Used as a value for the kOfxParamPropCacheInvalidation property.

	
kOfxParamInvalidateAll

	Used as a value for the kOfxParamPropCacheInvalidation property.

	
kOfxParamPropHint

	A hint to the user as to how the parameter is to be used.

	Type - UTF8 C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - “”

	
kOfxParamPropDefault

	The default value of a parameter.

	Type - The type is dependant on the parameter type as is the dimension.

	Property Set - plugin parameter descriptor (read/write) and instance (read/write only),

	Default - 0 cast to the relevant type (or “” for strings and custom parameters)

The exact type and dimension is dependant on the type of the parameter. These are….
	kOfxParamTypeInteger - integer property of one dimension

	kOfxParamTypeDouble - double property of one dimension

	kOfxParamTypeBoolean - integer property of one dimension

	kOfxParamTypeChoice - integer property of one dimension

	kOfxParamTypeRGBA - double property of four dimensions

	kOfxParamTypeRGB - double property of three dimensions

	kOfxParamTypeDouble2D - double property of two dimensions

	kOfxParamTypeInteger2D - integer property of two dimensions

	kOfxParamTypeDouble3D - double property of three dimensions

	kOfxParamTypeInteger3D - integer property of three dimensions

	kOfxParamTypeString - string property of one dimension

	kOfxParamTypeCustom - string property of one dimension

	kOfxParamTypeGroup - does not have this property

	kOfxParamTypePage - does not have this property

	kOfxParamTypePushButton - does not have this property

	
kOfxParamPropDoubleType

	Describes how the double parameter should be interpreted by a host.

	Type - C string X 1

	Default - kOfxParamDoubleTypePlain

	Property Set - 1D, 2D and 3D float plugin parameter descriptor (read/write) and instance (read only),

	Valid Values -This must be one of
	kOfxParamDoubleTypePlain - parameter has no special interpretation,

	kOfxParamDoubleTypeAngle - parameter is to be interpretted as an angle,

	kOfxParamDoubleTypeScale - parameter is to be interpretted as a scale factor,

	kOfxParamDoubleTypeTime - parameter represents a time value (1D only),

	kOfxParamDoubleTypeAbsoluteTime - parameter represents an absolute time value (1D only),

	kOfxParamDoubleTypeX - size wrt to the project’s X dimension (1D only), in canonical coordinates,

	kOfxParamDoubleTypeXAbsolute - absolute position on the X axis (1D only), in canonical coordinates,

	kOfxParamDoubleTypeY - size wrt to the project’s Y dimension(1D only), in canonical coordinates,

	kOfxParamDoubleTypeYAbsolute - absolute position on the Y axis (1D only), in canonical coordinates,

	kOfxParamDoubleTypeXY - size in 2D (2D only), in canonical coordinates,

	kOfxParamDoubleTypeXYAbsolute - an absolute position on the image plane, in canonical coordinates.

Double parameters can be interpreted in several different ways, this property tells the host how to do so and thus gives hints as to the interface of the parameter.

	
kOfxParamDoubleTypePlain

	value for the kOfxParamPropDoubleType property, indicating the parameter has no special interpretation and should be interpretted as a raw numeric value.

	
kOfxParamDoubleTypeScale

	value for the kOfxParamPropDoubleType property, indicating the parameter is to be interpreted as a scale factor. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeAngle

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as an angle. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeTime

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as a time. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeAbsoluteTime

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as an absolute time from the start of the effect. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeX

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the X dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeY

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the X dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeXY

	value for the kOfxParamPropDoubleType property, indicating a 2D size in canonical coords. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating a 2D position in canonical coords. See kOfxParamPropDoubleType.

	
kOfxParamPropDefaultCoordinateSystem

	Describes in which coordinate system a spatial double parameter’s default value is specified.

	Type - C string X 1

	Default - kOfxParamCoordinatesCanonical

	Property Set - Non normalised spatial double parameters, ie: any double param who’s kOfxParamPropDoubleType is set to one of…
	kOfxParamDoubleTypeX

	kOfxParamDoubleTypeXAbsolute

	kOfxParamDoubleTypeY

	kOfxParamDoubleTypeYAbsolute

	kOfxParamDoubleTypeXY

	kOfxParamDoubleTypeXYAbsolute

	Valid Values - This must be one of
	kOfxParamCoordinatesCanonical - the default is in canonical coords

	kOfxParamCoordinatesNormalised - the default is in normalised coordinates

This allows a spatial param to specify what its default is, so by saying normalised and “0.5” it would be in the ‘middle’, by saying canonical and 100 it would be at value 100 independent of the size of the image being applied to.

	
kOfxParamCoordinatesCanonical

	Define the canonical coordinate system.

	
kOfxParamCoordinatesNormalised

	Define the normalised coordinate system.

	
kOfxParamPropHasHostOverlayHandle

	A flag to indicate if there is a host overlay UI handle for the given parameter.

	Type - int x 1

	Property Set - plugin parameter descriptor (read only)

	Valid Values - 0 or 1

If set to 1, then the host is flagging that there is some sort of native user overlay interface handle available for the given parameter.

	
kOfxParamPropUseHostOverlayHandle

	A flag to indicate that the host should use a native UI overlay handle for the given parameter.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write only) and instance (read only)

	Default - 0

	Valid Values - 0 or 1

If set to 1, then a plugin is flaging to the host that the host should use a native UI overlay handle for the given parameter. A plugin can use this to keep a native look and feel for parameter handles. A plugin can use kOfxParamPropHasHostOverlayHandle to see if handles are available on the given parameter.

	
kOfxParamPropShowTimeMarker

	Enables the display of a time marker on the host’s time line to indicate the value of the absolute time param.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write)

	Default - 0

	Valid Values - 0 or 1

If a double parameter is has kOfxParamPropDoubleType set to kOfxParamDoubleTypeAbsoluteTime, then this indicates whether any marker should be made visible on the host’s time line.

	
kOfxPluginPropParamPageOrder

	Sets the parameter pages and order of pages.

	Type - C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - the names of any page param in the plugin

This property sets the preferred order of parameter pages on a host. If this is never set, the preferred order is the order the parameters were declared in.

	
kOfxParamPropPageChild

	The names of the parameters included in a page parameter.

	Type - C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - the names of any parameter that is not a group or page, as well as kOfxParamPageSkipRow and kOfxParamPageSkipColumn

This is a property on parameters of type kOfxParamTypePage, and tells the page what parameters it contains. The parameters are added to the page from the top left, filling in columns as we go. The two pseudo param names kOfxParamPageSkipRow and kOfxParamPageSkipColumn are used to control layout.

Note parameters can appear in more than one page.

	
kOfxParamPropParent

	The name of a parameter’s parent group.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - “”, which implies the “root” of the hierarchy,

	Valid Values - the name of a parameter with type of kOfxParamTypeGroup

Hosts that have hierarchical layouts of their params use this to recursively group parameter.

By default parameters are added in order of declaration to the ‘root’ hierarchy. This property is used to reparent params to a predefined param of type kOfxParamTypeGroup.

	
kOfxParamPropGroupOpen

	Whether the initial state of a group is open or closed in a hierarchical layout.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

This is a property on parameters of type kOfxParamTypeGroup, and tells the group whether it should be open or closed by default.

	
kOfxParamPropEnabled

	Used to enable a parameter in the user interface.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 1

	Valid Values - 0 or 1

When set to 0 a user should not be able to modify the value of the parameter. Note that the plug-in itself can still change the value of a disabled parameter.

	
kOfxParamPropDataPtr

	A private data pointer that the plug-in can store its own data behind.

	Type - pointer X 1

	Property Set - plugin parameter instance (read/write),

	Default - NULL

This data pointer is unique to each parameter instance, so two instances of the same parameter do not share the same data pointer. Use it to hang any needed private data structures.

	
kOfxParamPropChoiceOption

	Set an option in a choice parameter.

	Type - UTF8 C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the property is empty with no options set.

This property contains the set of options that will be presented to a user from a choice parameter. See ParametersChoice for more details.

	
kOfxParamPropMin

	The minimum value for a numeric parameter.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the smallest possible value corresponding to the parameter type (eg: INT_MIN for an integer, -DBL_MAX for a double parameter)

Setting this will also reset kOfxParamPropDisplayMin.

	
kOfxParamPropMax

	The maximum value for a numeric parameter.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the largest possible value corresponding to the parameter type (eg: INT_MAX for an integer, DBL_MAX for a double parameter)

Setting this will also reset :;kOfxParamPropDisplayMax.

	
kOfxParamPropDisplayMin

	The minimum value for a numeric parameter on any user interface.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the smallest possible value corresponding to the parameter type (eg: INT_MIN for an integer, -DBL_MAX for a double parameter)

If a user interface represents a parameter with a slider or similar, this should be the minumum bound on that slider.

	
kOfxParamPropDisplayMax

	The maximum value for a numeric parameter on any user interface.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the largest possible value corresponding to the parameter type (eg: INT_MAX for an integer, DBL_MAX for a double parameter)

If a user interface represents a parameter with a slider or similar, this should be the maximum bound on that slider.

	
kOfxParamPropIncrement

	The granularity of a slider used to represent a numeric parameter.

	Type - double X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 1

	Valid Values - any greater than 0.

This value is always in canonical coordinates for double parameters that are normalised.

	
kOfxParamPropDigits

	How many digits after a decimal point to display for a double param in a GUI.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 2

	Valid Values - any greater than 0.

This applies to double params of any dimension.

	
kOfxParamPropDimensionLabel

	Label for individual dimensions on a multidimensional numeric parameter.

	Type - UTF8 C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - “x”, “y” and “z”

	Valid Values - any

Use this on 2D and 3D double and integer parameters to change the label on an individual dimension in any GUI for that parameter.

	
kOfxParamPropIsAutoKeying

	Will a value change on the parameter add automatic keyframes.

	Type - int X 1

	Property Set - plugin parameter instance (read only),

	Valid Values - 0 or 1

This is set by the host simply to indicate the state of the property.

	
kOfxParamPropCustomInterpCallbackV1

	A pointer to a custom parameter’s interpolation function.

	Type - pointer X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - NULL

	Valid Values - must point to a OfxCustomParamInterpFuncV1

It is an error not to set this property in a custom parameter during a plugin’s define call if the custom parameter declares itself to be an animating parameter.

	
kOfxParamPropStringMode

	Used to indicate the type of a string parameter.

	Type - C string X 1

	Property Set - plugin string parameter descriptor (read/write) and instance (read only),

	Default - kOfxParamStringIsSingleLine

	Valid Values - This must be one of the following
	kOfxParamStringIsSingleLine

	kOfxParamStringIsMultiLine

	kOfxParamStringIsFilePath

	kOfxParamStringIsDirectoryPath

	kOfxParamStringIsLabel

	kOfxParamStringIsRichTextFormat

	
kOfxParamPropStringFilePathExists

	Indicates string parameters of file or directory type need that file to exist already.

	Type - int X 1

	Property Set - plugin string parameter descriptor (read/write) and instance (read only),

	Default - 1

	Valid Values - 0 or 1

If set to 0, it implies the user can specify a new file name, not just a pre-existing one.

	
kOfxParamStringIsSingleLine

	Used to set a string parameter to be single line, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsMultiLine

	Used to set a string parameter to be multiple line, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsFilePath

	Used to set a string parameter to be a file path, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsDirectoryPath

	Used to set a string parameter to be a directory path, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsLabel

	Use to set a string parameter to be a simple label, value to be passed to a kOfxParamPropStringMode property

	
kOfxParamStringIsRichTextFormat

	String value on the OfxParamPropStringMode property of a string parameter (added in 1.3)

	
kOfxParamPropCustomValue

	Used by interpolating custom parameters to get and set interpolated values.

	Type - C string X 1 or 2

This property is on the inArgs property and outArgs property of a OfxCustomParamInterpFuncV1 and in both cases contains the encoded value of a custom parameter. As an inArgs property it will have two values, being the two keyframes to interpolate. As an outArgs property it will have a single value and the plugin should fill this with the encoded interpolated value of the parameter.

	
kOfxParamPropInterpolationTime

	Used by interpolating custom parameters to indicate the time a key occurs at.

	Type - double X 2

	Property Set - inArgs parameter of a OfxCustomParamInterpFuncV1 (read only)

The two values indicate the absolute times the surrounding keyframes occur at. The keyframes are encoded in a kOfxParamPropCustomValue property.

	
kOfxParamPropInterpolationAmount

	Property used by OfxCustomParamInterpFuncV1 to indicate the amount of interpolation to perform.

	Type - double X 1

	Property Set - inArgs parameter of a OfxCustomParamInterpFuncV1 (read only)

	Valid Values - from 0 to 1

This property indicates how far between the two kOfxParamPropCustomValue keys to interpolate.

Typedefs

	
typedef struct OfxParamStruct *OfxParamHandle

	Blind declaration of an OFX param.

	
typedef struct OfxParamSetStruct *OfxParamSetHandle

	Blind declaration of an OFX parameter set.

	
OfxStatus() OfxCustomParamInterpFuncV1 (OfxParamSetHandle instance, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Function prototype for custom parameter interpolation callback functions.

	instance the plugin instance that this parameter occurs in

	inArgs handle holding the following properties…
	kOfxPropName - the name of the custom parameter to interpolate

	kOfxPropTime - absolute time the interpolation is ocurring at

	kOfxParamPropCustomValue - string property that gives the value of the two keyframes to interpolate, in this case 2D

	kOfxParamPropInterpolationTime - 2D double property that gives the time of the two keyframes we are interpolating

	kOfxParamPropInterpolationAmount - 1D double property indicating how much to interpolate between the two keyframes

	outArgs handle holding the following properties to be set
	kOfxParamPropCustomValue - the value of the interpolated custom parameter, in this case 1D

This function allows custom parameters to animate by performing interpolation between keys.

The plugin needs to parse the two strings encoding keyframes on either side of the time we need a value for. It should then interpolate a new value for it, encode it into a string and set the kOfxParamPropCustomValue property with this on the outArgs handle.

The interp value is a linear interpolation amount, however his may be derived from a cubic (or other) curve.

	
typedef struct OfxParameterSuiteV1 OfxParameterSuiteV1

	The OFX suite used to define and manipulate user visible parameters.

	
file ofxParametricParam.h

	
#include “ofxParam.h”

This header file defines the optional OFX extension to define and manipulate parametric parameters.

Defines

	
kOfxParametricParameterSuite

	string value to the kOfxPropType property for all parameters

	
kOfxParamTypeParametric

	String to identify a param as a single valued integer.

	
kOfxParamPropParametricDimension

	The dimension of a parametric param.

	Type - int X 1

	Property Set - parametric param descriptor (read/write) and instance (read only)

	default - 1

	Value Values - greater than 0

This indicates the dimension of the parametric param.

	
kOfxParamPropParametricUIColour

	The colour of parametric param curve interface in any UI.

	Type - double X N

	Property Set - parametric param descriptor (read/write) and instance (read only)

	default - unset,

	Value Values - three values for each dimension (see kOfxParamPropParametricDimension) being interpretted as R, G and B of the colour for each curve drawn in the UI.

This sets the colour of a parametric param curve drawn a host user interface. A colour triple is needed for each dimension of the oparametric param.

If not set, the host should generally draw these in white.

	
kOfxParamPropParametricInteractBackground

	Interact entry point to draw the background of a parametric parameter.

	Type - pointer X 1

	Property Set - plug-in parametric parameter descriptor (read/write) and instance (read only),

	Default - NULL, which implies the host should draw its default background.

Defines a pointer to an interact which will be used to draw the background of a parametric parameter’s user interface. None of the pen or keyboard actions can ever be called on the interact.

The openGL transform will be set so that it is an orthographic transform that maps directly to the ‘parametric’ space, so that ‘x’ represents the parametric position and ‘y’ represents the evaluated value.

	
kOfxParamHostPropSupportsParametricAnimation

	Property on the host to indicate support for parametric parameter animation.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values
	0 indicating the host does not support animation of parmetric params,

	1 indicating the host does support animation of parmetric params,

	
kOfxParamPropParametricRange

	Property to indicate the min and max range of the parametric input value.

	Type - double X 2

	Property Set - parameter descriptor (read/write only), and instance (read only)

	Default Value - (0, 1)

	Valid Values - any pair of numbers so that the first is less than the second.

This controls the min and max values that the parameter will be evaluated at.

Typedefs

	
typedef struct OfxParametricParameterSuiteV1 OfxParametricParameterSuiteV1

	The OFX suite used to define and manipulate ‘parametric’ parameters.

This is an optional suite.

Parametric parameters are in effect ‘functions’ a plug-in can ask a host to arbitrarily evaluate for some value ‘x’. A classic use case would be for constructing look-up tables, a plug-in would ask the host to evaluate one at multiple values from 0 to 1 and use that to fill an array.

A host would probably represent this to a user as a cubic curve in a standard curve editor interface, or possibly through scripting. The user would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are returning values based on some arbitrary argument orthogonal to time, so to evaluate such a param, you need to pass a parametric position and time.

Often, you would want such a parametric parameter to be multi-dimensional, for example, a colour look-up table might want three values, one for red, green and blue. Rather than declare three separate parametric parameters, it would be better to have one such parameter with multiple values in it.

The major complication with these parameters is how to allow a plug-in to set values, and defaults. The default default value of a parametric curve is to be an identity lookup. If a plugin wishes to set a different default value for a curve, it can use the suite to set key/value pairs on the descriptor of the param. When a new instance is made, it will have these curve values as a default.

	
file ofxPixels.h

	Contains pixel struct definitions

Typedefs

	
typedef struct OfxRGBAColourB OfxRGBAColourB

	Defines an 8 bit per component RGBA pixel.

	
typedef struct OfxRGBAColourS OfxRGBAColourS

	Defines a 16 bit per component RGBA pixel.

	
typedef struct OfxRGBAColourF OfxRGBAColourF

	Defines a floating point component RGBA pixel.

	
typedef struct OfxRGBAColourD OfxRGBAColourD

	Defines a double precision floating point component RGBA pixel.

	
typedef struct OfxRGBColourB OfxRGBColourB

	Defines an 8 bit per component RGB pixel.

	
typedef struct OfxRGBColourS OfxRGBColourS

	Defines a 16 bit per component RGB pixel.

	
typedef struct OfxRGBColourF OfxRGBColourF

	Defines a floating point component RGB pixel.

	
typedef struct OfxRGBColourD OfxRGBColourD

	Defines a double precision floating point component RGB pixel.

	
file ofxProgress.h

	
Defines

	
kOfxProgressSuite

	suite for displaying a progress bar

Typedefs

	
typedef struct OfxProgressSuiteV1 OfxProgressSuiteV1

	A suite that provides progress feedback from a plugin to an application.

A plugin instance can initiate, update and close a progress indicator with this suite.

This is an optional suite in the Image Effect API.

API V1.4: Amends the documentation of progress suite V1 so that it is expected that it can be raised in a modal manner and have a “cancel” button when invoked in instanceChanged. Plugins that perform analysis post an appropriate message, raise the progress monitor in a modal manner and should poll to see if processing has been aborted. Any cancellation should be handled gracefully by the plugin (eg: reset analysis parameters to default values), clear allocated memory…

Many hosts already operate as described above. kOfxStatReplyNo should be returned to the plugin during progressUpdate when the user presses cancel.

Suite V2: Adds an ID that can be looked up for internationalisation and so on. When a new version is introduced, because plug-ins need to support old versions, and plug-in’s new releases are not necessary in synch with hosts (or users don’t immediately update), best practice is to support the 2 suite versions. That is, the plugin should check if V2 exists; if not then check if V1 exists. This way a graceful transition is guaranteed. So plugin should fetchSuite passing 2, (OfxProgressSuiteV2*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,2); and if no success pass (OfxProgressSuiteV1*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,1);

	
typedef struct OfxProgressSuiteV2 OfxProgressSuiteV2

	

	
file ofxProperty.h

	
#include “ofxCore.h”

Contains the API for manipulating generic properties. For more details see PropertiesPage.

Defines

	
kOfxPropertySuite

	

Typedefs

	
typedef struct OfxPropertySuiteV1 OfxPropertySuiteV1

	The OFX suite used to access properties on OFX objects.

	
file ofxTimeLine.h

	
Defines

	
kOfxTimeLineSuite

	Name of the time line suite.

Typedefs

	
typedef struct OfxTimeLineSuiteV1 OfxTimeLineSuiteV1

	Suite to control timelines.

This suite is used to enquire and control a timeline associated with a plug-in instance.

This is an optional suite in the Image Effect API.

	
group ActionsAll

	These are the actions passed to a plug-in’s ‘main’ function

	
group PropertiesAll

	These strings are used to identify properties within OFX, they are broken up by the host suite or API they relate to.

	
group PropertiesGeneral

	These properties are general properties and apply to may objects across OFX

	
group StatusCodes

	These strings are used to identify error states within ofx, they are returned by various host suite functions, as well as plug-in functions. The valid return codes for each function are documented with that function.

	
group StatusCodesGeneral

	General status codes start at 1 and continue until 999

	
group OpenGLRenderSuite

	
StatusReturnValues

OfxStatus returns indicating that a OpenGL render error has occurred:

	If a plug-in returns kOfxStatGLRenderFailed, the host should retry the render with OpenGL rendering disabled.

	If a plug-in returns kOfxStatGLOutOfMemory, the host may choose to free resources on the GPU and retry the OpenGL render, rather than immediately falling back to CPU rendering.

	
kOfxStatGPUOutOfMemory

	GPU render ran out of memory.

	
kOfxStatGLOutOfMemory

	OpenGL render ran out of memory (same as kOfxStatGPUOutOfMemory)

	
kOfxStatGPURenderFailed

	GPU render failed in a non-memory-related way.

	
kOfxStatGLRenderFailed

	OpenGL render failed in a non-memory-related way (same as kOfxStatGPURenderFailed)

Defines

	
kOfxOpenGLRenderSuite

	The name of the OpenGL render suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxImageEffectPropOpenGLRenderSupported

	Indicates whether a host or plugin can support OpenGL accelerated rendering.

	Type - C string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only) - plugin instance change (read/write)

	Default - “false” for a plugin

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support OpenGL accelerated rendering

	”true” - which means a host or plugin can support OpenGL accelerated rendering, in the case of plug-ins this also means that it is capable of CPU based rendering in the absence of a GPU

	”needed” - only for plug-ins, this means that an effect has to have OpenGL support, without which it cannot work.

V1.4: It is now expected from host reporting v1.4 that the plugin can during instance change switch from true to false and false to true.

	
kOfxOpenGLPropPixelDepth

	Indicates the bit depths supported by a plug-in during OpenGL renders.

This is analogous to kOfxImageEffectPropSupportedPixelDepths. When a plug-in sets this property, the host will try to provide buffers/textures in one of the supported formats. Additionally, the target buffers where the plug-in renders to will be set to one of the supported formats.

Unlike kOfxImageEffectPropSupportedPixelDepths, this property is optional. Shader-based effects might not really care about any format specifics when using OpenGL textures, so they can leave this unset and allow the host the decide the format.

	Type - string X N

	Property Set - plugin descriptor (read only)

	Default - none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

	
kOfxImageEffectPropOpenGLEnabled

	Indicates that an image effect SHOULD use OpenGL acceleration in the current action.

When a plugin and host have established they can both use OpenGL renders then when this property has been set the host expects the plugin to render its result into the buffer it has setup before calling the render. The plugin can then also safely use the ‘OfxImageEffectOpenGLRenderSuite’

	Type - int X 1

	Property Set - inArgs property set of the following actions…
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values
	0 indicates that the effect cannot use the OpenGL suite

	1 indicates that the effect should render into the texture, and may use the OpenGL suite functions.

v1.4: kOfxImageEffectPropOpenGLEnabled should probably be checked in Instance Changed prior to try to read image via clipLoadTexture

Note

Once this property is set, the host and plug-in have agreed to use OpenGL, so the effect SHOULD access all its images through the OpenGL suite.

	
kOfxImageEffectPropOpenGLTextureIndex

	Indicates the texture index of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by ` OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLuint and used as the texture index when
 performing OpenGL texture operations.

 The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropOpenGLTextureTarget

	Indicates the texture target enumerator of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLenum and used as the texture target when performing OpenGL texture operations.

The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxActionOpenGLContextAttached

	Action called when an effect has just been attached to an OpenGL context.

The purpose of this action is to allow a plugin to set up any data it may need to do OpenGL rendering in an instance. For example…
	allocate a lookup table on a GPU,

	create an openCL or CUDA context that is bound to the host’s OpenGL context so it can share buffers.

The plugin will be responsible for deallocating any such shared resource in the kOfxActionOpenGLContextDetached action.

A host cannot call kOfxActionOpenGLContextAttached on the same instance without an intervening kOfxActionOpenGLContextDetached. A host can have a plugin swap OpenGL contexts by issuing a attach/detach for the first context then another attach for the next context.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxActionOpenGLContextDetached

	Action called when an effect is about to be detached from an OpenGL context.

The purpose of this action is to allow a plugin to deallocate any resource allocated in kOfxActionOpenGLContextAttached just before the host decouples a plugin from an OpenGL context. The host must call this with the same OpenGL context active as it called with the corresponding kOfxActionOpenGLContextAttached.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

Typedefs

	
typedef struct OfxImageEffectOpenGLRenderSuiteV1 OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

	
group CudaRender

	
Defines

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

	
group MetalRender

	
Defines

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
group OpenClRender

	
Defines

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
group ImageEffectActions

	These are the list of actions passed to an image effect plugin’s main function. For more details on how to deal with actions, see Image Effect Actions.

	
group ImageEffectPropDefines

	These are the list of properties used by the Image Effects API.

	
group StatusCodesImageEffect

	These are status codes returned by functions in the OfxImageEffectSuite and Image Effect plugin functions.

They range from 1000 until 1999

	
group PropertiesInteract

	These are the list of properties used by the Interact API documented in CustomInteractionPage.

	
group InteractActions

	These are the list of actions passed to an interact’s entry point function. For more details on how to deal with actions, see Interact Actions.

	
group KeySyms

	These keysymbols are used as values by the kOfxPropKeySym property to indicate the value of a key that has been pressed. A corresponding kOfxPropKeyString property is also set to contain the unicode value of the key (if it has one).

The special keysym kOfxKey_Unknown is used to set the kOfxPropKeySym property in cases where the key has a UTF8 value which is not supported by the symbols below.

	
group ParamTypeDefines

	These strings are used to identify the type of the parameter when it is defined, they are also on the kOfxParamPropType in any parameter instance.

	
group ParamPropDefines

	These are the list of properties used by the parameters suite.

	
group ErrorCodes

	

	
page ofxOpenGLRender

	
Introduction

The OfxOpenGLRenderSuite allows image effects to use OpenGL commands (hopefully backed by a GPU) to accelerate rendering of their outputs. The basic scheme is simple….
	An effect indicates it wants to use OpenGL acceleration by setting the kOfxImageEffectPropOpenGLRenderSupported flag on its descriptor

	A host indicates it supports OpenGL acceleration by setting kOfxImageEffectPropOpenGLRenderSupported on its descriptor

	In an effect’s kOfxImageEffectActionGetClipPreferences action, an effect indicates what clips it will be loading images from onto the GPU’s memory during an effect’s kOfxImageEffectActionRender action.

OpenGL House Keeping

If a host supports OpenGL rendering then it flags this with the string property kOfxImageEffectPropOpenGLRenderSupported on its descriptor property set. Effects that cannot run without OpenGL support should examine this in kOfxActionDescribe action and return a kOfxStatErrMissingHostFeature status flag if it is not set to “true”.

Effects flag to a host that they support OpenGL rendering by setting the string property kOfxImageEffectPropOpenGLRenderSupported on their effect descriptor during the kOfxActionDescribe action. Effects can work in three ways….
	purely on CPUs without any OpenGL support at all, in which case they should set kOfxImageEffectPropOpenGLRenderSupported to be “false” (the default),

	on CPUs but with optional OpenGL support, in which case they should set kOfxImageEffectPropOpenGLRenderSupported to be “true”,

	only with OpenGL support, in which case they should set kOfxImageEffectPropOpenGLRenderSupported to be “needed”.

Hosts can examine this flag and respond to it appropriately.

Effects can use OpenGL accelerated rendering during the following action…
	kOfxImageEffectActionRender

If an effect has indicated that it optionally supports OpenGL acceleration, it should check the property kOfxImageEffectPropOpenGLEnabled passed as an in argument to the following actions,
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

If this property is set to 0, then it should not attempt to use any calls to the OpenGL suite or OpenGL calls whilst rendering.

Getting Images as Textures

An effect could fetch an image into memory from a host via the standard Image Effect suite “clipGetImage” call, then create an OpenGL texture from that. However as several buffer copies and various other bits of house keeping may need to happen to do this, it is more efficient for a host to create the texture directly.

The OfxOpenGLRenderSuiteV1::clipLoadTexture function does this. The arguments and semantics are similar to the OfxImageEffectSuiteV2::clipGetImage function, with a few minor changes.

The effect is passed back a property handle describing the texture. Once the texture is finished with, this should be disposed of via the OfxOpenGLRenderSuiteV1::clipFreeTexture function, which will also delete the associated OpenGL texture (for source clips).

The returned handle has a set of properties on it, analogous to the properties returned on the image handle by OfxImageEffectSuiteV2::clipGetImage. These are:
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

The main difference between this and an image handle is that the kOfxImagePropData property is replaced by the kOfxImageEffectPropOpenGLTextureIndex property. This integer property should be cast to a GLuint and is the index to use for the OpenGL texture. Next to texture handle the texture target enumerator is given in kOfxImageEffectPropOpenGLTextureTarget

Note, because the image is being directly loaded into a texture by the host it need not obey the Clip Preferences action to remap the image to the pixel depth the effect requested.

Render Output Directly with OpenGL

Effects can use the graphics context as they see fit. They may be doing several render passes with fetch back from the card to main memory via ‘render to texture’ mechanisms interleaved with passes performed on the CPU. The effect must leave output on the graphics card in the provided output image texture buffer.

The host will create a default OpenGL viewport that is the size of the render window passed to the render action. The following code snippet shows how the viewport should be rooted at the bottom left of the output texture.

 // set up the OpenGL context for the render to texture
 ...

 // figure the size of the render window
 int dx = renderWindow.x2 - renderWindow.x1;
 int dy = renderWindow.y2 - renderWindow.y2;

 // setup the output viewport
 glViewport(0, 0, dx, dy);

Prior to calling the render action the host may also choose to bind the output texture as the current color buffer (render target), or they may defer doing this until clipLoadTexture is called for the output clip.

After this, it is completely up to the effect to choose what OpenGL operations to render with, including projections and so on.

OpenGL Current Context

The host is only required to make the OpenGL context current (e.g., using wglMakeCurrent, for Windows) during the following actions:

	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	kOfxActionOpenGLContextAttached

	kOfxActionOpenGLContextDetached

For the first 3 actions, Render through EndSequenceRender, the host is only required to set the OpenGL context if kOfxImageEffectPropOpenGLEnabled is set. In other words, a plug-in should not expect the OpenGL context to be current for other OFX calls, such as kOfxImageEffectActionDescribeInContext.

	
page deprecated

	
	
Member kOfxImageComponentYUVA

	- removed in v1.4. Note, this has been deprecated in v1.3

	
Member kOfxImageEffectPropInAnalysis

	- This feature has been deprecated - officially commented out v1.4.

	
Member kOfxInteractPropViewportSize

	- V1.3: This property is the redundant and its use will be deprecated in future releases. V1.4: Removed

	
Member kOfxParamDoubleTypeNormalisedX

	- V1.3: Deprecated in favour of ::OfxParamDoubleTypeX V1.4: Removed

	
Member kOfxParamDoubleTypeNormalisedXAbsolute

	- V1.3: Deprecated in favour of ::OfxParamDoubleTypeXAbsolute V1.4: Removed

	
Member kOfxParamDoubleTypeNormalisedXY

	- V1.3: Deprecated in favour of ::OfxParamDoubleTypeXY V1.4: Removed

	
Member kOfxParamDoubleTypeNormalisedXYAbsolute

	- V1.3: Deprecated in favour of kOfxParamDoubleTypeXYAbsolute V1.4: Removed

	
Member kOfxParamDoubleTypeNormalisedY

	- V1.3: Deprecated in favour of ::OfxParamDoubleTypeY V1.4: Removed

	
Member kOfxParamDoubleTypeNormalisedYAbsolute

	- V1.3: Deprecated in favour of ::OfxParamDoubleTypeYAbsolute V1.4: Removed

	
Member kOfxParamPropPluginMayWrite

	- v1.4: deprecated - to be removed in 1.5

	
Member OfxYUVAColourF

	- Deprecated in 1.3, removed in 1.4

	
Member OfxYUVAColourS

	- Deprecated in 1.3, removed in 1.4

	
page index

	This page represents the automatically extracted HTML documentation of the source headers for the OFX Image Effect API. The documentation was extracted by doxygen (http://www.doxygen.org). A more complete reference manual is https://openfx.readthedocs.io .

File list

	File ofxCore.h

	File ofxDialog.h

	File ofxDrawSuite.h

	File ofxGPURender.h

	File ofxImageEffect.h

	File ofxInteract.h

	File ofxKeySyms.h

	File ofxMemory.h

	File ofxMessage.h

	File ofxMultiThread.h

	File ofxOld.h

	File ofxOpenGLRender.h

	File ofxParam.h

	File ofxParametricParam.h

	File ofxPixels.h

	File ofxProgress.h

	File ofxProperty.h

	File ofxTimeLine.h

File ofxCore.h

Contains the core OFX architectural struct and function definitions. For more details on the basic OFX architecture, see Architecture.

Defines

	
OfxExport

	Platform independent export macro.

This macro is to be used before any symbol that is to be exported from a plug-in. This is OS/compiler dependent.

	
kOfxActionLoad

	This action is the first action passed to a plug-in after the binary containing the plug-in has been loaded. It is there to allow a plug-in to create any global data structures it may need and is also when the plug-in should fetch suites from the host.

The handle, inArgs and outArgs arguments to the mainEntry are redundant and should be set to NULL.

	Pre:

	
	The plugin’s OfxPlugin::setHost function has been called

	Post:

	This action will not be called again while the binary containing the plug-in remains loaded.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well,

	kOfxStatReplyDefault, the action was ignored,

	kOfxStatFailed, the load action failed, no further actions will be passed to the plug-in. Interpret if possible kOfxStatFailed as plug-in indicating it does not want to load Do not create an entry in the host’s UI for plug-in then.

Plug-in also has the option to return 0 for OfxGetNumberOfPlugins or kOfxStatFailed if host supports OfxSetHost in which case kOfxActionLoad will never be called.

	kOfxStatErrFatal, fatal error in the plug-in.

	
kOfxActionDescribe

	The kOfxActionDescribe is the second action passed to a plug-in. It is where a plugin defines how it behaves and the resources it needs to function.

Note that the handle passed in acts as a descriptor for, rather than an instance of the plugin. The handle is global and unique. The plug-in is at liberty to cache the handle away for future reference until the plug-in is unloaded.

Most importantly, the effect must set what image effect contexts it is capable of working in.

This action must be trapped, it is not optional.

	Parameters:

	
	handle – handle to the plug-in descriptor, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionLoad has been called

	Post:

	
	kOfxActionDescribe will not be called again, unless it fails and returns one of the error codes where the host is allowed to attempt the action again

	the handle argument, being the global plug-in description handle, is a valid handle from the end of a sucessful describe action until the end of the kOfxActionUnload action (ie: the plug-in can cache it away without worrying about it changing between actions).

	kOfxImageEffectActionDescribeInContext will be called once for each context that the host and plug-in mutually support. If a plug-in does not report to support any context supported by host, host should not enable the plug-in.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatErrMissingHostFeature, in which the plugin will be unloaded and ignored, plugin may post message

	kOfxStatErrMemory, in which case describe may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxActionUnload

	This action is the last action passed to the plug-in before the binary containing the plug-in is unloaded. It is there to allow a plug-in to destroy any global data structures it may have created.

The handle, inArgs and outArgs arguments to the main entry are redundant and should be set to NULL.

	Pre:

	
	the kOfxActionLoad action has been called

	all instances of a plugin have been destroyed

	Post:

	
	No other actions will be called.

	Returns:

	
	kOfxStatOK, the action was trapped all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal, in which case we the program will be forced to quit

	
kOfxActionPurgeCaches

	This action is an action that may be passed to a plug-in instance from time to time in low memory situations. Instances recieving this action should destroy any data structures they may have and release the associated memory, they can later reconstruct this from the effect’s parameter set and associated information.

For Image Effects, it is generally a bad idea to call this after each render, but rather it should be called after kOfxImageEffectActionEndSequenceRender Some effects, typically those flagged with the kOfxImageEffectInstancePropSequentialRender property, may need to cache information from previously rendered frames to function correctly, or have data structures that are expensive to reconstruct at each frame (eg: a particle system). Ideally, such effect should free such structures during the kOfxImageEffectActionEndSequenceRender action.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionSyncPrivateData

	This action is called when a plugin should synchronise any private data structures to its parameter set. This generally occurs when an effect is about to be saved or copied, but it could occur in other situations as well.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Post:

	
	Any private state data can be reconstructed from the parameter set,

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionCreateInstance

	This action is the first action passed to a plug-in’s instance after its creation. It is there to allow a plugin to create any per-instance data structures it may need.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called

	the instance is fully constructed, with all objects requested in the describe actions (eg, parameters and clips) have been constructed and have had their initial values set. This means that if the values are being loaded from an old setup, that load should have taken place before the create instance action is called.

	Post:

	
	the instance pointer will be valid until the kOfxActionDestroyInstance action is passed to the plug-in with the same instance handle

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrFatal

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should destroy the instanace handle and not attempt to proceed further

	
kOfxActionDestroyInstance

	This action is the last passed to a plug-in’s instance before its destruction. It is there to allow a plugin to destroy any per-instance data structures it may have created.

	kOfxStatOK, the action was trapped and all was well,

	kOfxStatReplyDefault, the action was ignored as the effect had nothing to do,

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the handle,

	the instance has not had any of its members destroyed yet,

	Post:

	
	the instance pointer is no longer valid and any operation on it will be undefined

	Returns:

	To some extent, what is returned is moot, a bit like throwing an exception in a C++ destructor, so the host should continue destruction of the instance regardless.

	
kOfxActionInstanceChanged

	This action signals that something has changed in a plugin’s instance, either by user action, the host or the plugin itself. All change actions are bracketed by a pair of kOfxActionBeginInstanceChanged and kOfxActionEndInstanceChanged actions. The inArgs property set is used to determine what was the thing inside the instance that was changed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropType The type of the thing that changed which will be one of..

	kOfxTypeParameter Indicating a parameter’s value has changed in some way

	kOfxTypeClip A clip to an image effect has changed in some way (for Image Effect Plugins only)

	kOfxPropName the name of the thing that was changed in the instance

	kOfxPropChangeReason what triggered the change, which will be one of…

	kOfxChangeUserEdited - the user or host changed the instance somehow and caused a change to something, this includes undo/redos, resets and loading values from files or presets,

	kOfxChangePluginEdited - the plugin itself has changed the value of the instance in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

	kOfxPropTime

	the effect time at which the chang occured (for Image Effect Plugins only)

	kOfxImageEffectPropRenderScale

	the render scale currently being applied to any image fetched from a clip (for Image Effect Plugins only)

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	kOfxActionBeginInstanceChanged has been called on the instance handle.

	Post:

	
	kOfxActionEndInstanceChanged will be called on the instance handle.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionBeginInstanceChanged

	The kOfxActionBeginInstanceChanged and kOfxActionEndInstanceChanged actions are used to bracket all kOfxActionInstanceChanged actions, whether a single change or multiple changes. Some changes to a plugin instance can be grouped logically (eg: a ‘reset all’ button resetting all the instance’s parameters), the begin/end instance changed actions allow a plugin to respond appropriately to a large set of changes. For example, a plugin that maintains a complex internal state can delay any changes to that state until all parameter changes have completed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropChangeReason what triggered the change, which will be one of…

	kOfxChangeUserEdited - the user or host changed the instance somehow and caused a change to something, this includes undo/redos, resets and loading values from files or presets,

	kOfxChangePluginEdited - the plugin itself has changed the value of the instance in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

	outArgs – is redundant and is set to NULL

	Post:

	
	For kOfxActionBeginInstanceChanged , kOfxActionCreateInstance has been called on the instance handle.

	For kOfxActionEndInstanceChanged , kOfxActionBeginInstanceChanged has been called on the instance handle.

	kOfxActionCreateInstance has been called on the instance handle.

	Post:

	
	For kOfxActionBeginInstanceChanged, kOfxActionInstanceChanged will be called at least once on the instance handle.

	kOfxActionEndInstanceChanged will be called on the instance handle.

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionEndInstanceChanged

	Action called after the end of a set of kOfxActionEndInstanceChanged actions, used with kOfxActionBeginInstanceChanged to bracket a grouped set of changes, see kOfxActionBeginInstanceChanged.

	
kOfxActionBeginInstanceEdit

	This is called when an instance is first actively edited by a user, ie: and interface is open and parameter values and input clips can be modified. It is there so that effects can create private user interface structures when necassary. Note that some hosts can have multiple editors open on the same effect instance simulateously.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Post:

	
	kOfxActionEndInstanceEdit will be called when the last editor is closed on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxActionEndInstanceEdit

	This is called when the last user interface on an instance closed. It is there so that effects can destroy private user interface structures when necassary. Note that some hosts can have multiple editors open on the same effect instance simulateously, this will only be called when the last of those editors are closed.

	Parameters:

	
	handle – handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionBeginInstanceEdit has been called on the instance handle,

	Post:

	
	no user interface is open on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored

	kOfxStatErrFatal,

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message

	
kOfxPropAPIVersion

	Property on the host descriptor, saying what API version of the API is being implemented.

	Type - int X N

	Property Set - host descriptor.

This is a version string that will specify which version of the API is being implemented by a host. It can have multiple values. For example “1.0”, “1.2.4” etc…..

If this is not present, it is safe to assume that the version of the API is “1.0”.

	
kOfxPropTime

	General property used to get/set the time of something.

	Type - double X 1

	Default - 0, if a setable property

	Property Set - commonly used as an argument to actions, input and output.

	
kOfxPropIsInteractive

	Indicates if a host is actively editing the effect with some GUI.

	Type - int X 1

	Property Set - effect instance (read only)

	Valid Values - 0 or 1

If false the effect currently has no interface, however this may be because the effect is loaded in a background render host, or it may be loaded on an interactive host that has not yet opened an editor for the effect.

The output of an effect should only ever depend on the state of its parameters, not on the interactive flag. The interactive flag is more a courtesy flag to let a plugin know that it has an interace. If a plugin want’s to have its behaviour dependant on the interactive flag, it can always make a secret parameter which shadows the state if the flag.

	
kOfxPluginPropFilePath

	The file path to the plugin.

	Type - C string X 1

	Property Set - effect descriptor (read only)

This is a string that indicates the file path where the plug-in was found by the host. The path is in the native path format for the host OS (eg: UNIX directory separators are forward slashes, Windows ones are backslashes).

The path is to the bundle location, see InstallationLocation. eg: ‘/usr/OFX/Plugins/AcmePlugins/AcmeFantasticPlugin.ofx.bundle’

	
kOfxPropInstanceData

	A private data pointer that the plug-in can store its own data behind.

	Type - pointer X 1

	Property Set - plugin instance (read/write),

	Default - NULL

This data pointer is unique to each plug-in instance, so two instances of the same plug-in do not share the same data pointer. Use it to hang any needed private data structures.

	
kOfxPropType

	General property, used to identify the kind of an object behind a handle.

	Type - ASCII C string X 1

	Property Set - any object handle (read only)

	Valid Values - currently this can be…
	kOfxTypeImageEffectHost

	kOfxTypeImageEffect

	kOfxTypeImageEffectInstance

	kOfxTypeParameter

	kOfxTypeParameterInstance

	kOfxTypeClip

	kOfxTypeImage

	
kOfxPropName

	Unique name of an object.

	Type - ASCII C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject (read only)

This property is used to label objects uniquely amoung objects of that type. It is typically set when a plugin creates a new object with a function that takes a name.

	
kOfxPropVersion

	Identifies a specific version of a host or plugin.

	Type - int X N

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - “0”

	Valid Values - positive integers

This is a multi dimensional integer property that represents the version of a host (host descriptor), or plugin (plugin descriptor). These represent a version number of the form ‘1.2.3.4’, with each dimension adding another ‘dot’ on the right.

A version is considered to be more recent than another if its ordered set of values is lexicographically greater than another, reading left to right. (ie: 1.2.4 is smaller than 1.2.6). Also, if the number of dimensions is different, then the values of the missing dimensions are considered to be zero (so 1.2.4 is greater than 1.2).

	
kOfxPropVersionLabel

	Unique user readable version string of a plugin or host.

	Type - string X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - none, the host needs to set this

	Valid Values - ASCII string

This is purely for user feedback, a plugin or host should use kOfxPropVersion if they need to check for specific versions.

	
kOfxPropPluginDescription

	Description of the plug-in to a user.

	Type - string X 1

	Property Set - plugin descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - UTF8 string

This is a string giving a potentially verbose description of the effect.

	
kOfxPropLabel

	User visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - the kOfxPropName the object was created with.

The label is what a user sees on any interface in place of the object’s name.

Note that resetting this will also reset kOfxPropShortLabel and kOfxPropLongLabel.

	
kOfxPropIcon

	If set this tells the host to use an icon instead of a label for some object in the interface.

	Type - string X 2

	Property Set - various descriptors in the API

	Default - “”

	Valid Values - ASCII string

The value is a path is defined relative to the Resource folder that points to an SVG or PNG file containing the icon.

The first dimension, if set, will the name of and SVG file, the second a PNG file.

	
kOfxPropShortLabel

	Short user visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - initially kOfxPropName, but will be reset if kOfxPropLabel is changed.

This is a shorter version of the label, typically 13 character glyphs or less. Hosts should use this if they have limitted display space for their object labels.

	
kOfxPropLongLabel

	Long user visible name of an object.

	Type - UTF8 C string X 1

	Property Set - on many objects (descriptors and instances), see PropertiesByObject. Typically readable and writable in most cases.

	Default - initially kOfxPropName, but will be reset if kOfxPropLabel is changed.

This is a longer version of the label, typically 32 character glyphs or so. Hosts should use this if they have mucg display space for their object labels.

	
kOfxPropChangeReason

	Indicates why a plug-in changed.

	Type - ASCII C string X 1

	Property Set - inArgs parameter on the kOfxActionInstanceChanged action.

	Valid Values - this can be…
	kOfxChangeUserEdited - the user directly edited the instance somehow and caused a change to something, this includes undo/redos and resets

	kOfxChangePluginEdited - the plug-in itself has changed the value of the object in some action

	kOfxChangeTime - the time has changed and this has affected the value of the object because it varies over time

Argument property for the kOfxActionInstanceChanged action.

	
kOfxPropEffectInstance

	A pointer to an effect instance.

	Type - pointer X 1

	Property Set - on an interact instance (read only)

This property is used to link an object to the effect. For example if the plug-in supplies an openGL overlay for an image effect, the interact instance will have one of these so that the plug-in can connect back to the effect the GUI links to.

	
kOfxPropHostOSHandle

	A pointer to an operating system specific application handle.

	Type - pointer X 1

	Property Set - host descriptor.

Some plug-in vendor want raw OS specific handles back from the host so they can do interesting things with host OS APIs. Typically this is to control windowing properly on Microsoft Windows. This property returns the appropriate ‘root’ window handle on the current operating system. So on Windows this would be the hWnd of the application main window.

	
kOfxChangeUserEdited

	String used as a value to kOfxPropChangeReason to indicate a user has changed something.

	
kOfxChangePluginEdited

	String used as a value to kOfxPropChangeReason to indicate the plug-in itself has changed something.

	
kOfxChangeTime

	String used as a value to kOfxPropChangeReason to a time varying object has changed due to a time change.

	
kOfxFlagInfiniteMax

	Used to flag infinite rects. Set minimums to this to indicate infinite.

This is effectively INT_MAX.

	
kOfxFlagInfiniteMin

	Used to flag infinite rects. Set minimums to this to indicate infinite.

This is effectively INT_MIN

	
kOfxBitDepthNone

	String used to label unset bitdepths.

	
kOfxBitDepthByte

	String used to label unsigned 8 bit integer samples.

	
kOfxBitDepthShort

	String used to label unsigned 16 bit integer samples.

	
kOfxBitDepthHalf

	String used to label half-float (16 bit floating point) samples.

	Version
	Added in Version 1.4. Was in ofxOpenGLRender.h before.

	
kOfxBitDepthFloat

	String used to label signed 32 bit floating point samples.

	
kOfxStatOK

	Status code indicating all was fine.

	
kOfxStatFailed

	Status error code for a failed operation.

	
kOfxStatErrFatal

	Status error code for a fatal error.

Only returned in the case where the plug-in or host cannot continue to function and needs to be restarted.

	
kOfxStatErrUnknown

	Status error code for an operation on or request for an unknown object.

	
kOfxStatErrMissingHostFeature

	Status error code returned by plug-ins when they are missing host functionality, either an API or some optional functionality (eg: custom params).

Plug-Ins returning this should post an appropriate error message stating what they are missing.

	
kOfxStatErrUnsupported

	Status error code for an unsupported feature/operation.

	
kOfxStatErrExists

	Status error code for an operation attempting to create something that exists.

	
kOfxStatErrFormat

	Status error code for an incorrect format.

	
kOfxStatErrMemory

	Status error code indicating that something failed due to memory shortage.

	
kOfxStatErrBadHandle

	Status error code for an operation on a bad handle.

	
kOfxStatErrBadIndex

	Status error code indicating that a given index was invalid or unavailable.

	
kOfxStatErrValue

	Status error code indicating that something failed due an illegal value.

	
kOfxStatReplyYes

	OfxStatus returned indicating a ‘yes’.

	
kOfxStatReplyNo

	OfxStatus returned indicating a ‘no’.

	
kOfxStatReplyDefault

	OfxStatus returned indicating that a default action should be performed.

Typedefs

	
typedef struct OfxPropertySetStruct *OfxPropertySetHandle

	Blind data structure to manipulate sets of properties through.

	
typedef int OfxStatus

	OFX status return type.

	
typedef struct OfxHost OfxHost

	Generic host structure passed to OfxPlugin::setHost function.

This structure contains what is needed by a plug-in to bootstrap its connection to the host.

	
OfxStatus() OfxPluginEntryPoint (const char *action, const void *handle, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Entry point for plug-ins.

	action - ASCII c string indicating which action to take

	instance - object to which action should be applied, this will need to be cast to the appropriate blind data type depending on the action

	inData - handle that contains action specific properties

	outData - handle where the plug-in should set various action specific properties

This is how the host generally communicates with a plug-in. Entry points are used to pass messages to various objects used within OFX. The main use is within the OfxPlugin struct.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

	
typedef struct OfxPlugin OfxPlugin

	The structure that defines a plug-in to a host.

This structure is the first element in any plug-in structure using the OFX plug-in architecture. By examining its members a host can determine the API that the plug-in implements, the version of that API, its name and version.

For details see Architecture.

	
typedef double OfxTime

	How time is specified within the OFX API.

	
typedef struct OfxRangeI OfxRangeI

	Defines one dimensional integer bounds.

	
typedef struct OfxRangeD OfxRangeD

	Defines one dimensional double bounds.

	
typedef struct OfxPointI OfxPointI

	Defines two dimensional integer point.

	
typedef struct OfxPointD OfxPointD

	Defines two dimensional double point.

	
typedef struct OfxRectI OfxRectI

	Defines two dimensional integer region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

	
typedef struct OfxRectD OfxRectD

	Defines two dimensional double region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Functions

	
OfxPlugin *OfxGetPlugin(int nth)

	Returns the ‘nth’ plug-in implemented inside a binary.

Returns a pointer to the ‘nth’ plug-in implemented in the binary. A function of this type must be implemented in and exported from each plug-in binary.

	
int OfxGetNumberOfPlugins(void)

	Defines the number of plug-ins implemented inside a binary.

A host calls this to determine how many plug-ins there are inside a binary it has loaded. A function of this type must be implemented in and exported from each plug-in binary.

	
OfxStatus OfxSetHost(const OfxHost *host)

	First thing host should call.

This host call, added in 2020, is not specified in earlier implementation of the API. Therefore host must check if the plugin implemented it and not assume symbol exists. The order of calls is then: 1) OfxSetHost, 2) OfxGetNumberOfPlugins, 3) OfxGetPlugin The host pointer is only assumed valid until OfxGetPlugin where it might get reset. Plug-in can return kOfxStatFailed to indicate it has nothing to do here, it’s not for this Host and it should be skipped silently.

	
struct OfxHost

	
#include <ofxCore.h>

Generic host structure passed to OfxPlugin::setHost function.

This structure contains what is needed by a plug-in to bootstrap its connection to the host.

Public Members

	
OfxPropertySetHandle host

	Global handle to the host. Extract relevant host properties from this. This pointer will be valid while the binary containing the plug-in is loaded.

	
const void *(*fetchSuite)(OfxPropertySetHandle host, const char *suiteName, int suiteVersion)

	The function which the plug-in uses to fetch suites from the host.

	host - the host the suite is being fetched from this must be the host member of the OfxHost struct containing fetchSuite.

	suiteName - ASCII string labelling the host supplied API

	suiteVersion - version of that suite to fetch

Any API fetched will be valid while the binary containing the plug-in is loaded.

Repeated calls to fetchSuite with the same parameters will return the same pointer.

returns
	NULL if the API is unknown (either the api or the version requested),

	pointer to the relevant API if it was found

	
struct OfxPlugin

	
#include <ofxCore.h>

The structure that defines a plug-in to a host.

This structure is the first element in any plug-in structure using the OFX plug-in architecture. By examining its members a host can determine the API that the plug-in implements, the version of that API, its name and version.

For details see Architecture.

Public Members

	
const char *pluginApi

	Defines the type of the plug-in, this will tell the host what the plug-in does. e.g.: an image effects plug-in would be a “OfxImageEffectPlugin”

	
int apiVersion

	Defines the version of the pluginApi that this plug-in implements

	
const char *pluginIdentifier

	String that uniquely labels the plug-in among all plug-ins that implement an API. It need not necessarily be human sensible, however the preference is to use reverse internet domain name of the developer, followed by a ‘.’ then by a name that represents the plug-in.. It must be a legal ASCII string and have no whitespace in the name and no non printing chars. For example “uk.co.somesoftwarehouse.myPlugin”

	
unsigned int pluginVersionMajor

	Major version of this plug-in, this gets incremented when backwards compatibility is broken.

	
unsigned int pluginVersionMinor

	Major version of this plug-in, this gets incremented when software is changed, but does not break backwards compatibility.

	
void (*setHost)(OfxHost *host)

	Function the host uses to connect the plug-in to the host’s api fetcher.

	fetchApi - pointer to host’s API fetcher

Mandatory function.

The very first function called in a plug-in. The plug-in must not call any OFX functions within this, it must only set its local copy of the host pointer.

	Pre:

	
	nothing else has been called

	Post:

	
	the pointer suite is valid until the plug-in is unloaded

	
OfxPluginEntryPoint *mainEntry

	Main entry point for plug-ins.

Mandatory function.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

Preconditions
	setHost has been called

	
struct OfxRangeI

	
#include <ofxCore.h>

Defines one dimensional integer bounds.

Public Members

	
int min

	

	
int max

	

	
struct OfxRangeD

	
#include <ofxCore.h>

Defines one dimensional double bounds.

Public Members

	
double min

	

	
double max

	

	
struct OfxPointI

	
#include <ofxCore.h>

Defines two dimensional integer point.

Public Members

	
int x

	

	
int y

	

	
struct OfxPointD

	
#include <ofxCore.h>

Defines two dimensional double point.

Public Members

	
double x

	

	
double y

	

	
struct OfxRectI

	
#include <ofxCore.h>

Defines two dimensional integer region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
int x1

	

	
int y1

	

	
int x2

	

	
int y2

	

	
struct OfxRectD

	
#include <ofxCore.h>

Defines two dimensional double region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
double x1

	

	
double y1

	

	
double x2

	

	
double y2

	

File ofxDialog.h

This file contains an optional suite which should be used to popup a native OS dialog from a host parameter changed action.

When a host uses a fullscreen window and is running the OFX plugins in another thread it can lead to a lot of conflicts if that plugin will try to open its own window.

This suite will provide the functionality for a plugin to request running its dialog in the UI thread, and informing the host it will do this so it can take the appropriate actions needed. (Like lowering its priority etc..)

Defines

	
kOfxDialogSuite

	The name of the Dialog suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxActionDialog

	Action called after a dialog has requested a ‘Dialog’ The arguments to the action are:

	user_data - Pointer which was provided when the plugin requested the Dialog

When the plugin receives this action it is safe to popup a dialog. It runs in the host’s UI thread, which may differ from the main OFX processing thread. Plugin should return from this action when all Dialog interactions are done. At that point the host will continue again. The host will not send any other messages asynchronous to this one.

Typedefs

	
typedef struct OfxDialogSuiteV1 OfxDialogSuiteV1

	

	
struct OfxDialogSuiteV1

	
#include <ofxDialog.h>

Public Members

	
OfxStatus (*RequestDialog)(void *user_data)

	Request the host to send a kOfxActionDialog to the plugin from its UI thread.

	Pre:

	
	user_data: A pointer to any user data

	Post:

	

	Return:

	
	kOfxStatOK - The host has queued the request and will send an ‘OfxActionDialog’

	kOfxStatFailed - The host has no provisio for this or can not deal with it currently.

	
OfxStatus (*NotifyRedrawPending)(void)

	Inform the host of redraw event so it can redraw itself If the host runs fullscreen in OpenGL, it would otherwise not receive redraw event when a dialog in front would catch all events.

	Pre:

	

	Post:

	

	Return:

	
	kOfxStatReplyDefault

File ofxDrawSuite.h

Contains the API for host-independent drawing. Added for OFX 1.5, Jan 2022.

Defines

	
kOfxDrawSuite

	the string that names the DrawSuite, passed to OfxHost::fetchSuite

	
kOfxInteractPropDrawContext

	The Draw Context handle.

	Type - pointer X 1

	Property Set - read only property on the inArgs of the following actions…

	kOfxInteractActionDraw

Typedefs

	
typedef struct OfxDrawContext *OfxDrawContextHandle

	Blind declaration of an OFX drawing context.

	
typedef enum OfxStandardColour OfxStandardColour

	Defines valid values for OfxDrawSuiteV1::getColour.

	
typedef enum OfxDrawLineStipplePattern OfxDrawLineStipplePattern

	Defines valid values for OfxDrawSuiteV1::setLineStipple.

	
typedef enum OfxDrawPrimitive OfxDrawPrimitive

	Defines valid values for OfxDrawSuiteV1::draw.

	
typedef enum OfxDrawTextAlignment OfxDrawTextAlignment

	Defines text alignment values for OfxDrawSuiteV1::drawText.

	
typedef struct OfxDrawSuiteV1 OfxDrawSuiteV1

	OFX suite that allows an effect to draw to a host-defined display context.

Enums

	
enum OfxStandardColour

	Defines valid values for OfxDrawSuiteV1::getColour.

Values:

	
enumerator kOfxStandardColourOverlayBackground

	

	
enumerator kOfxStandardColourOverlayActive

	

	
enumerator kOfxStandardColourOverlaySelected

	

	
enumerator kOfxStandardColourOverlayDeselected

	

	
enumerator kOfxStandardColourOverlayMarqueeFG

	

	
enumerator kOfxStandardColourOverlayMarqueeBG

	

	
enumerator kOfxStandardColourOverlayText

	

	
enum OfxDrawLineStipplePattern

	Defines valid values for OfxDrawSuiteV1::setLineStipple.

Values:

	
enumerator kOfxDrawLineStipplePatternSolid

	

	
enumerator kOfxDrawLineStipplePatternDot

	

	
enumerator kOfxDrawLineStipplePatternDash

	

	
enumerator kOfxDrawLineStipplePatternAltDash

	

	
enumerator kOfxDrawLineStipplePatternDotDash

	

	
enum OfxDrawPrimitive

	Defines valid values for OfxDrawSuiteV1::draw.

Values:

	
enumerator kOfxDrawPrimitiveLines

	

	
enumerator kOfxDrawPrimitiveLineStrip

	

	
enumerator kOfxDrawPrimitiveLineLoop

	

	
enumerator kOfxDrawPrimitiveRectangle

	

	
enumerator kOfxDrawPrimitivePolygon

	

	
enumerator kOfxDrawPrimitiveEllipse

	

	
enum OfxDrawTextAlignment

	Defines text alignment values for OfxDrawSuiteV1::drawText.

Values:

	
enumerator kOfxDrawTextAlignmentLeft

	

	
enumerator kOfxDrawTextAlignmentRight

	

	
enumerator kOfxDrawTextAlignmentTop

	

	
enumerator kOfxDrawTextAlignmentBottom

	

	
enumerator kOfxDrawTextAlignmentBaseline

	

	
enumerator kOfxDrawTextAlignmentCenterH

	

	
enumerator kOfxDrawTextAlignmentCenterV

	

	
struct OfxDrawSuiteV1

	
#include <ofxDrawSuite.h>

OFX suite that allows an effect to draw to a host-defined display context.

Public Members

	
OfxStatus (*getColour)(OfxDrawContextHandle context, OfxStandardColour std_colour, OfxRGBAColourF *colour)

	Retrieves the host’s desired draw colour for.

	context - the draw context

	std_colour - the desired colour type

	colour - the returned RGBA colour

	Return:

	
	kOfxStatOK - the colour was returned

	kOfxStatErrValue - std_colour was invalid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setColour)(OfxDrawContextHandle context, const OfxRGBAColourF *colour)

	Sets the colour for future drawing operations (lines, filled shapes and text)

	context - the draw context

	colour - the RGBA colour

The host should use “over” compositing when using a non-opaque colour.

	Return:

	
	kOfxStatOK - the colour was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineWidth)(OfxDrawContextHandle context, float width)

	Sets the line width for future line drawing operations.

	context - the draw context

	width - the line width

Use width 0 for a single pixel line or non-zero for a smooth line of the desired width

The host should adjust for screen density.

	Return:

	
	kOfxStatOK - the width was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineStipple)(OfxDrawContextHandle context, OfxDrawLineStipplePattern pattern)

	Sets the stipple pattern for future line drawing operations.

	context - the draw context

	pattern - the desired stipple pattern

	Return:

	
	kOfxStatOK - the pattern was changed

	kOfxStatErrValue - pattern was not valid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*draw)(OfxDrawContextHandle context, OfxDrawPrimitive primitive, const OfxPointD *points, int point_count)

	Draws a primitive of the desired type.

	context - the draw context

	primitive - the desired primitive

	points - the array of points in the primitive

	point_count - the number of points in the array

kOfxDrawPrimitiveLines - like GL_LINES, n points draws n/2 separated lines kOfxDrawPrimitiveLineStrip - like GL_LINE_STRIP, n points draws n-1 connected lines kOfxDrawPrimitiveLineLoop - like GL_LINE_LOOP, n points draws n connected lines kOfxDrawPrimitiveRectangle - draws an axis-aligned filled rectangle defined by 2 opposite corner points kOfxDrawPrimitivePolygon - like GL_POLYGON, draws a filled n-sided polygon kOfxDrawPrimitiveEllipse - draws a axis-aligned elliptical line (not filled) within the rectangle defined by 2 opposite corner points

	Return:

	
	kOfxStatOK - the draw was completed

	kOfxStatErrValue - invalid primitive, or point_count not valid for primitive

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*drawText)(OfxDrawContextHandle context, const char *text, const OfxPointD *pos, int alignment)

	Draws text at the specified position.

	context - the draw context

	text - the text to draw (UTF-8 encoded)

	pos - the position at which to align the text

	alignment - the text alignment flags (see kOfxDrawTextAlignment*)

The text font face and size are determined by the host.

	Return:

	
	kOfxStatOK - the text was drawn

	kOfxStatErrValue - text or pos were not defined

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

File ofxGPURender.h

This file contains an optional suite for performing GPU-accelerated
rendering of OpenFX Image Effect Plug-ins. For details see
\ref ofxGPURender.

It allows hosts and plugins to support OpenGL, CUDA, Metal and other
GPU acceleration methods.

StatusReturnValues

OfxStatus returns indicating that a OpenGL render error has occurred:

	If a plug-in returns kOfxStatGLRenderFailed, the host should retry the render with OpenGL rendering disabled.

	If a plug-in returns kOfxStatGLOutOfMemory, the host may choose to free resources on the GPU and retry the OpenGL render, rather than immediately falling back to CPU rendering.

	
kOfxStatGPUOutOfMemory

	GPU render ran out of memory.

	
kOfxStatGLOutOfMemory

	OpenGL render ran out of memory (same as kOfxStatGPUOutOfMemory)

	
kOfxStatGPURenderFailed

	GPU render failed in a non-memory-related way.

	
kOfxStatGLRenderFailed

	OpenGL render failed in a non-memory-related way (same as kOfxStatGPURenderFailed)

Defines

	
__OFXGPURENDER_H__

	

	
kOfxOpenGLRenderSuite

	The name of the OpenGL render suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxImageEffectPropOpenGLRenderSupported

	Indicates whether a host or plugin can support OpenGL accelerated rendering.

	Type - C string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only) - plugin instance change (read/write)

	Default - “false” for a plugin

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support OpenGL accelerated rendering

	”true” - which means a host or plugin can support OpenGL accelerated rendering, in the case of plug-ins this also means that it is capable of CPU based rendering in the absence of a GPU

	”needed” - only for plug-ins, this means that an effect has to have OpenGL support, without which it cannot work.

V1.4: It is now expected from host reporting v1.4 that the plugin can during instance change switch from true to false and false to true.

	
kOfxOpenGLPropPixelDepth

	Indicates the bit depths supported by a plug-in during OpenGL renders.

This is analogous to kOfxImageEffectPropSupportedPixelDepths. When a plug-in sets this property, the host will try to provide buffers/textures in one of the supported formats. Additionally, the target buffers where the plug-in renders to will be set to one of the supported formats.

Unlike kOfxImageEffectPropSupportedPixelDepths, this property is optional. Shader-based effects might not really care about any format specifics when using OpenGL textures, so they can leave this unset and allow the host the decide the format.

	Type - string X N

	Property Set - plugin descriptor (read only)

	Default - none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

	
kOfxImageEffectPropOpenGLEnabled

	Indicates that an image effect SHOULD use OpenGL acceleration in the current action.

When a plugin and host have established they can both use OpenGL renders then when this property has been set the host expects the plugin to render its result into the buffer it has setup before calling the render. The plugin can then also safely use the ‘OfxImageEffectOpenGLRenderSuite’

	Type - int X 1

	Property Set - inArgs property set of the following actions…
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values
	0 indicates that the effect cannot use the OpenGL suite

	1 indicates that the effect should render into the texture, and may use the OpenGL suite functions.

v1.4: kOfxImageEffectPropOpenGLEnabled should probably be checked in Instance Changed prior to try to read image via clipLoadTexture

Note

Once this property is set, the host and plug-in have agreed to use OpenGL, so the effect SHOULD access all its images through the OpenGL suite.

	
kOfxImageEffectPropOpenGLTextureIndex

	Indicates the texture index of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by ` OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLuint and used as the texture index when
 performing OpenGL texture operations.

 The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropOpenGLTextureTarget

	Indicates the texture target enumerator of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLenum and used as the texture target when performing OpenGL texture operations.

The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxActionOpenGLContextAttached

	Action called when an effect has just been attached to an OpenGL context.

The purpose of this action is to allow a plugin to set up any data it may need to do OpenGL rendering in an instance. For example…
	allocate a lookup table on a GPU,

	create an openCL or CUDA context that is bound to the host’s OpenGL context so it can share buffers.

The plugin will be responsible for deallocating any such shared resource in the kOfxActionOpenGLContextDetached action.

A host cannot call kOfxActionOpenGLContextAttached on the same instance without an intervening kOfxActionOpenGLContextDetached. A host can have a plugin swap OpenGL contexts by issuing a attach/detach for the first context then another attach for the next context.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxActionOpenGLContextDetached

	Action called when an effect is about to be detached from an OpenGL context.

The purpose of this action is to allow a plugin to deallocate any resource allocated in kOfxActionOpenGLContextAttached just before the host decouples a plugin from an OpenGL context. The host must call this with the same OpenGL context active as it called with the corresponding kOfxActionOpenGLContextAttached.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

Typedefs

	
typedef struct OfxImageEffectOpenGLRenderSuiteV1 OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

	
struct OfxImageEffectOpenGLRenderSuiteV1

	
#include <ofxGPURender.h>

OFX suite that provides image to texture conversion for OpenGL processing.

Public Members

	
OfxStatus (*clipLoadTexture)(OfxImageClipHandle clip, OfxTime time, const char *format, const OfxRectD *region, OfxPropertySetHandle *textureHandle)

	loads an image from an OFX clip as a texture into OpenGL

	clip - the clip to load the image from

	time - effect time to load the image from

	format - the requested texture format (As in none,byte,word,half,float, etc..) When set to NULL, the host decides the format based on the plug-in’s kOfxOpenGLPropPixelDepth setting.

	region - region of the image to load (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	textureHandle - a property set containing information about the texture

An image is fetched from a clip at the indicated time for the given region and loaded into an OpenGL texture. When a specific format is requested, the host ensures it gives the requested format. When the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the kOfxImageEffectActionRender action. If the region parameter is set to non-NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set or is NULL, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped to the clip’s Region of Definition. Information about the texture, including the texture index, is returned in the textureHandle argument. The properties on this handle will be…
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

With the exception of the OpenGL specifics, these properties are the same as the properties in an image handle returned by clipGetImage in the image effect suite.

Note

	this is the OpenGL equivalent of clipGetImage from OfxImageEffectSuiteV1

	Pre:

	
	clip was returned by clipGetHandle

	Format property in the texture handle

	Post:

	
	texture handle to be disposed of by clipFreeTexture before the action returns

	when the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the render action.

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - not enough OpenGL memory was available for the effect to load the texture. The plugin should abort the GL render and return kOfxStatErrMemory, after which the host can decide to retry the operation with CPU based processing.

	
OfxStatus (*clipFreeTexture)(OfxPropertySetHandle textureHandle)

	Releases the texture handle previously returned by clipLoadTexture.

For input clips, this also deletes the texture from OpenGL. This should also be called on the output clip; for the Output clip, it just releases the handle but does not delete the texture (since the host will need to read it).

	Pre:

	
	textureHandle was returned by clipGetImage

	Post:

	
	all operations on textureHandle will be invalid, and the OpenGL texture it referred to has been deleted (for source clips)

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - general failure for some reason,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*flushResources)()

	Request the host to minimize its GPU resource load.

When a plugin fails to allocate GPU resources, it can call this function to request the host to flush its GPU resources if it holds any. After the function the plugin can try again to allocate resources which then might succeed if the host actually has released anything.

	Pre:

	

	Post:

	
	No changes to the plugin GL state should have been made.

	Return:

	
	kOfxStatOK - the host has actually released some resources,

	kOfxStatReplyDefault - nothing the host could do..

File ofxImageEffect.h

Defines

	
_ofxImageEffect_h_

	

	
kOfxImageEffectPluginApi

	String used to label OFX Image Effect Plug-ins.

Set the pluginApi member of the OfxPluginHeader inside any OfxImageEffectPluginStruct to be this so that the host knows the plugin is an image effect.

	
kOfxImageEffectPluginApiVersion

	The current version of the Image Effect API.

	
kOfxImageComponentNone

	String to label something with unset components.

	
kOfxImageComponentRGBA

	String to label images with RGBA components.

	
kOfxImageComponentRGB

	String to label images with RGB components.

	
kOfxImageComponentAlpha

	String to label images with only Alpha components.

	
kOfxImageEffectContextGenerator

	Use to define the generator image effect context. See kOfxImageEffectPropContext.

	
kOfxImageEffectContextFilter

	Use to define the filter effect image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextTransition

	Use to define the transition image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextPaint

	Use to define the paint image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextGeneral

	Use to define the general image effect context See kOfxImageEffectPropContext.

	
kOfxImageEffectContextRetimer

	Use to define the retimer effect context See kOfxImageEffectPropContext.

	
kOfxTypeImageEffectHost

	Used as a value for kOfxPropType on image effect host handles.

	
kOfxTypeImageEffect

	Used as a value for kOfxPropType on image effect plugin handles.

	
kOfxTypeImageEffectInstance

	Used as a value for kOfxPropType on image effect instance handles

	
kOfxTypeClip

	Used as a value for kOfxPropType on image effect clips.

	
kOfxTypeImage

	Used as a value for kOfxPropType on image effect images.

	
kOfxImageEffectActionGetRegionOfDefinition

	The region of definition for an image effect is the rectangular section of the 2D image plane that it is capable of filling, given the state of its input clips and parameters. This action is used to calculate the RoD for a plugin instance at a given frame. For more details on regions of definition see Image Effect Architectures.

Note that hosts that have constant sized imagery need not call this action, only hosts that allow image sizes to vary need call this.

If the effect did not trap this, it means the host should use the default RoD instead, which depends on the context. This is…

	generator context - defaults to the project window,

	filter and paint contexts - defaults to the RoD of the ‘Source’ input clip at the given time,

	transition context - defaults to the union of the RoDs of the ‘SourceFrom’ and ‘SourceTo’ input clips at the given time,

	general context - defaults to the union of the RoDs of all the non optional input clips and the ‘Source’ input clip (if it exists and it is connected) at the given time, if none exist, then it is the project window

	retimer context - defaults to the union of the RoD of the ‘Source’ input clip at the frame directly preceding the value of the ‘SourceTime’ double parameter and the frame directly after it

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the effect time for which a region of definition is being requested

	kOfxImageEffectPropRenderScale the render scale that should be used in any calculations in this action

	outArgs – has the following property which the plug-in may set
	kOfxImageEffectPropRegionOfDefinition the calculated region of definition, initially set by the host to the default RoD (see below), in Canonical Coordinates.

	Returns:

	
	kOfxStatOK the action was trapped and the RoD was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetRegionsOfInterest

	This action allows a host to ask an effect, given a region I want to render, what region do you need from each of your input clips. In that way, depending on the host architecture, a host can fetch the minimal amount of the image needed as input. Note that there is a region of interest to be set in outArgs for each input clip that exists on the effect. For more details see Image EffectArchitectures”.

The default RoI is simply the value passed in on the kOfxImageEffectPropRegionOfInterest inArgs property set. All the RoIs in the outArgs property set must initialised to this value before the action is called.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the effect time for which a region of definition is being requested

	kOfxImageEffectPropRenderScale the render scale that should be used in any calculations in this action

	kOfxImageEffectPropRegionOfInterest the region to be rendered in the output image, in Canonical Coordinates.

	outArgs – has a set of 4 dimensional double properties, one for each of the input clips to the effect. The properties are each named OfxImageClipPropRoI_ with the clip name post pended, for example OfxImageClipPropRoI_Source. These are initialised to the default RoI.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one RoI was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetTimeDomain

	This action allows a host to ask an effect what range of frames it can produce images over. Only effects instantiated in the GeneralContext” can have this called on them. In all other the host is in strict control over the temporal duration of the effect.

The default is:

	the union of all the frame ranges of the non optional input clips,

	infinite if there are no non optional input clips.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is null

	outArgs – has the following property
	kOfxImageEffectPropFrameRange the frame range an effect can produce images for

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	the effect instance has been created in the general effect context

	Returns:

	
	kOfxStatOK, the action was trapped and the kOfxImageEffectPropFrameRange was set in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default value

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetFramesNeeded

	This action lets the host ask the effect what frames are needed from each input clip to process a given frame. For example a temporal based degrainer may need several frames around the frame to render to do its work.

This action need only ever be called if the plugin has set the kOfxImageEffectPropTemporalClipAccess property on the plugin descriptor to be true. Otherwise the host assumes that the only frame needed from the inputs is the current one and this action is not called.

Note that each clip can have it’s required frame range specified, and that you can specify discontinuous sets of ranges for each clip, for example

// The effect always needs the initial frame of the source as well as the previous and current frame
double rangeSource[4];

// required ranges on the source
rangeSource[0] = 0; // we always need frame 0 of the source
rangeSource[1] = 0;
rangeSource[2] = currentFrame - 1; // we also need the previous and current frame on the source
rangeSource[3] = currentFrame;

gPropHost->propSetDoubleN(outArgs, "OfxImageClipPropFrameRange_Source", 4, rangeSource);

 Which sets two discontinuous range of frames from the 'Source' clip
required as input.

The default frame range is simply the single frame, kOfxPropTime..kOfxPropTime, found on the inArgs property set. All the frame ranges in the outArgs property set must initialised to this value before the action is called.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following property
	kOfxPropTime the effect time for which we need to calculate the frames needed on input

	outArgs has a set of properties, one for each input clip, named OfxImageClipPropFrameRange_ with the name of the clip post-pended. For example OfxImageClipPropFrameRange_Source. All these properties are multi-dimensional doubles, with the dimension is a multiple of two. Each pair of values indicates a continuous range of frames that is needed on the given input. They are all initalised to the default value.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one frame range in the outArgs property set

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionGetClipPreferences

	This action allows a plugin to dynamically specify its preferences for input and output clips. Please see Image Effect Clip Preferences for more details on the behaviour. Clip preferences are constant for the duration of an effect, so this action need only be called once per clip, not once per frame.

This should be called once after creation of an instance, each time an input clip is changed, and whenever a parameter named in the kOfxImageEffectPropClipPreferencesSlaveParam has its value changed.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – is redundant and is set to NULL

	outArgs – has the following properties which the plugin can set
	a set of char * X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropComponents_ post pended with the clip’s name. This must be set to one of the component types which the host supports and the effect stated it can accept on that input

	a set of char * X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropDepth_ post pended with the clip’s name. This must be set to one of the pixel depths both the host and plugin supports

	a set of double X 1 properties, one for each of the input clips currently attached and the output clip, labelled with OfxImageClipPropPAR_ post pended with the clip’s name. This is the pixel aspect ratio of the input and output clips. This must be set to a positive non zero double value,

	kOfxImageEffectPropFrameRate the frame rate of the output clip, this must be set to a positive non zero double value

	kOfxImageClipPropFieldOrder the fielding of the output clip

	kOfxImageEffectPropPreMultiplication the premultiplication of the output clip

	kOfxImageClipPropContinuousSamples whether the output clip can produce different images at non-frame intervals, defaults to false,

	kOfxImageEffectFrameVarying whether the output clip can produces different images at different times, even if all parameters and inputs are constant, defaults to false.

	Returns:

	
	kOfxStatOK, the action was trapped and at least one of the properties in the outArgs was changed from its default value

	kOfxStatReplyDefault, the action was not trapped and the host should use the default values

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionIsIdentity

	Sometimes an effect can pass through an input uprocessed, for example a blur effect with a blur size of 0. This action can be called by a host before it attempts to render an effect to determine if it can simply copy input directly to output without having to call the render action on the effect.

If the effect does not need to process any pixels, it should set the value of the kOfxPropName to the clip that the host should us as the output instead, and the kOfxPropTime property on outArgs to be the time at which the frame should be fetched from a clip.

The default action is to call the render action on the effect.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the time at which to test for identity

	kOfxImageEffectPropFieldToRender the field to test for identity

	kOfxImageEffectPropRenderWindow the window (in \ref PixelCoordinates) to test for identity under

	kOfxImageEffectPropRenderScale the scale factor being applied to the images being renderred

	outArgs – has the following properties which the plugin can set
	kOfxPropName this to the name of the clip that should be used if the effect is an identity transform, defaults to the empty string

	kOfxPropTime the time to use from the indicated source clip as an identity image (allowing time slips to happen), defaults to the value in kOfxPropTime in inArgs

	Returns:

	
	kOfxStatOK, the action was trapped and the effect should not have its render action called, the values in outArgs indicate what frame from which clip to use instead

	kOfxStatReplyDefault, the action was not trapped and the host should call the render action

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionRender

	This action is where an effect gets to push pixels and turn its input clips and parameter set into an output image. This is possibly quite complicated and covered in the Rendering Image Effects chapter.

The render action must be trapped by the plug-in, it cannot return kOfxStatReplyDefault. The pixels needs be pushed I’m afraid.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxPropTime the time at which to render

	kOfxImageEffectPropFieldToRender the field to render

	kOfxImageEffectPropRenderWindow the window (in \ref PixelCoordinates) to render

	kOfxImageEffectPropRenderScale the scale factor being applied to the images being renderred

	kOfxImageEffectPropSequentialRenderStatus whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus if the render is in response to a user modifying the effect in an interactive session

	kOfxImageEffectPropRenderQualityDraft if the render should be done in draft mode (e.g. for faster scrubbing)

	outArgs – is redundant and should be set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	kOfxImageEffectActionBeginSequenceRender has been called on the instance

	Post:

	
	kOfxImageEffectActionEndSequenceRender action will be called on the instance

	Returns:

	
	kOfxStatOK, the effect rendered happily

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectActionBeginSequenceRender

	This action is passed to an image effect before it renders a range of frames. It is there to allow an effect to set things up for a long sequence of frames. Note that this is still called, even if only a single frame is being rendered in an interactive environment.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxImageEffectPropFrameRange the range of frames (inclusive) that will be renderred

	kOfxImageEffectPropFrameStep what is the step between frames, generally set to 1 (for full frame renders) or 0.5 (for fielded renders)

	kOfxPropIsInteractive is this a single frame render due to user interaction in a GUI, or a proper full sequence render.

	kOfxImageEffectPropRenderScale the scale factor to apply to images for this call

	kOfxImageEffectPropSequentialRenderStatus whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus if the render is in response to a user modifying the effect in an interactive session

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	Post:

	
	kOfxImageEffectActionRender action will be called at least once on the instance

	kOfxImageEffectActionEndSequenceRender action will be called on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and handled cleanly by the effect,

	kOfxStatReplyDefault, the action was not trapped, but all is well anyway,

	kOfxStatErrMemory, in which case the action may be called again after a memory purge,

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message,

	kOfxStatErrFatal

	
kOfxImageEffectActionEndSequenceRender

	This action is passed to an image effect after is has rendered a range of frames. It is there to allow an effect to free resources after a long sequence of frame renders. Note that this is still called, even if only a single frame is being rendered in an interactive environment.

	Parameters:

	
	handle – handle to the instance, cast to an OfxImageEffectHandle

	inArgs – has the following properties
	kOfxImageEffectPropFrameRange the range of frames (inclusive) that will be rendered

	kOfxImageEffectPropFrameStep what is the step between frames, generally set to 1 (for full frame renders) or 0.5 (for fielded renders),

	kOfxPropIsInteractive

	is this a single frame render due to user interaction in a GUI, or a proper full sequence render.

	kOfxImageEffectPropRenderScale

	the scale factor to apply to images for this call

	kOfxImageEffectPropSequentialRenderStatus

	whether the effect is currently being rendered in strict frame order on a single instance

	kOfxImageEffectPropInteractiveRenderStatus

	if the render is in response to a user modifying the effect in an interactive session

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance

	kOfxImageEffectActionEndSequenceRender action was called on the instance

	kOfxImageEffectActionRender action was called at least once on the instance

	Returns:

	
	kOfxStatOK, the action was trapped and handled cleanly by the effect,

	kOfxStatReplyDefault, the action was not trapped, but all is well anyway,

	kOfxStatErrMemory, in which case the action may be called again after a memory purge,

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message,

	kOfxStatErrFatal

	
kOfxImageEffectActionDescribeInContext

	This action is unique to OFX Image Effect plug-ins. Because a plugin is able to exhibit different behaviour depending on the context of use, each separate context will need to be described individually. It is within this action that image effects describe which parameters and input clips it requires.

This action will be called multiple times, one for each of the contexts the plugin says it is capable of implementing. If a host does not support a certain context, then it need not call kOfxImageEffectActionDescribeInContext for that context.

This action must be trapped, it is not optional.

	Parameters:

	
	handle – handle to the context descriptor, cast to an OfxImageEffectHandle this may or may not be the same as passed to kOfxActionDescribe

	inArgs – has the following property:
	kOfxImageEffectPropContext the context being described

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called on the descriptor handle,

	kOfxActionCreateInstance has not been called

	Returns:

	
	kOfxStatOK, the action was trapped and all was well

	kOfxStatErrMissingHostFeature, in which the context will be ignored by the host, the plugin may post a message

	kOfxStatErrMemory, in which case the action may be called again after a memory purge

	kOfxStatFailed, something wrong, but no error code appropriate, plugin to post message

	kOfxStatErrFatal

	
kOfxImageEffectPropSupportedContexts

	Indicates to the host the contexts a plugin can be used in.

	Type - string X N

	Property Set - image effect descriptor passed to kOfxActionDescribe (read/write)

	Default - this has no defaults, it must be set

	Valid Values - This must be one of
	kOfxImageEffectContextGenerator

	kOfxImageEffectContextFilter

	kOfxImageEffectContextTransition

	kOfxImageEffectContextPaint

	kOfxImageEffectContextGeneral

	kOfxImageEffectContextRetimer

	
kOfxImageEffectPropPluginHandle

	The plugin handle passed to the initial ‘describe’ action.

	Type - pointer X 1

	Property Set - plugin instance, (read only)

This value will be the same for all instances of a plugin.

	
kOfxImageEffectHostPropIsBackground

	Indicates if a host is a background render.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 if the host is a foreground host, it may open the effect in an interactive session (or not)

	1 if the host is a background ‘processing only’ host, and the effect will never be opened in an interactive session.

	
kOfxImageEffectPluginPropSingleInstance

	Indicates whether only one instance of a plugin can exist at the same time.

	Type - int X 1

	Property Set - plugin descriptor (read/write)

	Default - 0

	Valid Values - This must be one of
	0 - which means multiple instances can exist simultaneously,

	1 - which means only one instance can exist at any one time.

Some plugins, for whatever reason, may only be able to have a single instance in existance at any one time. This plugin property is used to indicate that.

	
kOfxImageEffectPluginRenderThreadSafety

	Indicates how many simultaneous renders the plugin can deal with.

	Type - string X 1

	Property Set - plugin descriptor (read/write)

	Default - kOfxImageEffectRenderInstanceSafe

	Valid Values - This must be one of
	kOfxImageEffectRenderUnsafe - indicating that only a single ‘render’ call can be made at any time amoung all instances,

	kOfxImageEffectRenderInstanceSafe - indicating that any instance can have a single ‘render’ call at any one time,

	kOfxImageEffectRenderFullySafe - indicating that any instance of a plugin can have multiple renders running simultaneously

	
kOfxImageEffectRenderUnsafe

	String used to label render threads as un thread safe, see, kOfxImageEffectPluginRenderThreadSafety.

	
kOfxImageEffectRenderInstanceSafe

	String used to label render threads as instance thread safe, kOfxImageEffectPluginRenderThreadSafety.

	
kOfxImageEffectRenderFullySafe

	String used to label render threads as fully thread safe, kOfxImageEffectPluginRenderThreadSafety.

	
kOfxImageEffectPluginPropHostFrameThreading

	Indicates whether a plugin lets the host perform per frame SMP threading.

	Type - int X 1

	Property Set - plugin descriptor (read/write)

	Default - 1

	Valid Values - This must be one of
	0 - which means that the plugin will perform any per frame SMP threading

	1 - which means the host can call an instance’s render function simultaneously at the same frame, but with different windows to render.

	
kOfxImageEffectPropSupportsMultipleClipDepths

	Indicates whether a host or plugin can support clips of differing component depths going into/out of an effect.

	Type - int X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - 0 for a plugin

	Valid Values - This must be one of
	0 - in which case the host or plugin does not support clips of multiple pixel depths,

	1 - which means a host or plugin is able to to deal with clips of multiple pixel depths,

If a host indicates that it can support multiple pixels depths, then it will allow the plugin to explicitly set the output clip’s pixel depth in the kOfxImageEffectActionGetClipPreferences action. See ImageEffectClipPreferences.

	
kOfxImageEffectPropSupportsMultipleClipPARs

	Indicates whether a host or plugin can support clips of differing pixel aspect ratios going into/out of an effect.

	Type - int X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - 0 for a plugin

	Valid Values - This must be one of
	0 - in which case the host or plugin does not support clips of multiple pixel aspect ratios

	1 - which means a host or plugin is able to to deal with clips of multiple pixel aspect ratios

If a host indicates that it can support multiple pixel aspect ratios, then it will allow the plugin to explicitly set the output clip’s aspect ratio in the kOfxImageEffectActionGetClipPreferences action. See ImageEffectClipPreferences.

	
kOfxImageEffectPropClipPreferencesSlaveParam

	Indicates the set of parameters on which a value change will trigger a change to clip preferences.

	Type - string X N

	Property Set - plugin descriptor (read/write)

	Default - none set

	Valid Values - the name of any described parameter

The plugin uses this to inform the host of the subset of parameters that affect the effect’s clip preferences. A value change in any one of these will trigger a call to the clip preferences action.

The plugin can be slaved to multiple parameters (setting index 0, then index 1 etc…)

	
kOfxImageEffectPropSetableFrameRate

	Indicates whether the host will let a plugin set the frame rate of the output clip.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - in which case the plugin may not change the frame rate of the output clip,

	1 - which means a plugin is able to change the output clip’s frame rate in the kOfxImageEffectActionGetClipPreferences action.

See ImageEffectClipPreferences.

If a clip can be continously sampled, the frame rate will be set to 0.

	
kOfxImageEffectPropSetableFielding

	Indicates whether the host will let a plugin set the fielding of the output clip.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - in which case the plugin may not change the fielding of the output clip,

	1 - which means a plugin is able to change the output clip’s fielding in the kOfxImageEffectActionGetClipPreferences action.

See ImageEffectClipPreferences.

	
kOfxImageEffectInstancePropSequentialRender

	Indicates whether a plugin needs sequential rendering, and a host support it.

	Type - int X 1

	Property Set - plugin descriptor (read/write) or plugin instance (read/write), and host descriptor (read only)

	Default - 0

	Valid Values -
	0 - for a plugin, indicates that a plugin does not need to be sequentially rendered to be correct, for a host, indicates that it cannot ever guarantee sequential rendering,

	1 - for a plugin, indicates that it needs to be sequentially rendered to be correct, for a host, indicates that it can always support sequential rendering of plugins that are sequentially rendered,

	2 - for a plugin, indicates that it is best to render sequentially, but will still produce correct results if not, for a host, indicates that it can sometimes render sequentially, and will have set kOfxImageEffectPropSequentialRenderStatus on the relevant actions

Some effects have temporal dependancies, some information from from the rendering of frame N-1 is needed to render frame N correctly. This property is set by an effect to indicate such a situation. Also, some effects are more efficient if they run sequentially, but can still render correct images even if they do not, eg: a complex particle system.

During an interactive session a host may attempt to render a frame out of sequence (for example when the user scrubs the current time), and the effect needs to deal with such a situation as best it can to provide feedback to the user.

However if a host caches output, any frame frame generated in random temporal order needs to be considered invalid and needs to be re-rendered when the host finally performs a first to last render of the output sequence.

In all cases, a host will set the kOfxImageEffectPropSequentialRenderStatus flag to indicate its sequential render status.

	
kOfxImageEffectPropSequentialRenderStatus

	Property on all the render action that indicate the current sequential render status of a host.

	Type - int X 1

	Property Set - read only property on the inArgs of the following actions…
	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values -
	0 - the host is not currently sequentially rendering,

	1 - the host is currentely rendering in a way so that it guarantees sequential rendering.

This property is set to indicate whether the effect is currently being rendered in frame order on a single effect instance. See kOfxImageEffectInstancePropSequentialRender for more details on sequential rendering.

	
kOfxHostNativeOriginBottomLeft

	

	
kOfxHostNativeOriginTopLeft

	

	
kOfxHostNativeOriginCenter

	

	
kOfxImageEffectHostPropNativeOrigin

	Property that indicates the host native UI space - this is only a UI hint, has no impact on pixel processing.

	Type - UTF8 string X 1

	Property Set - read only property (host)
	Valid Values - “kOfxImageEffectHostPropNativeOriginBottomLeft” - 0,0 bottom left “kOfxImageEffectHostPropNativeOriginTopLeft” - 0,0 top left “kOfxImageEffectHostPropNativeOriginCenter” - 0,0 center (screen space)

This property is set to kOfxHostNativeOriginBottomLeft pre V1.4 and was to be discovered by plug-ins. This is useful for drawing overlay for points… so everything matches the rest of the app (for example expression linking to other tools, or simply match the reported location of the host viewer).

	
kOfxImageEffectPropInteractiveRenderStatus

	Property that indicates if a plugin is being rendered in response to user interaction.

	Type - int X 1

	Property Set - read only property on the inArgs of the following actions…
	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values -
	0 - the host is rendering the instance due to some reason other than an interactive tweak on a UI,

	1 - the instance is being rendered because a user is modifying parameters in an interactive session.

This property is set to 1 on all render calls that have been triggered because a user is actively modifying an effect (or up stream effect) in an interactive session. This typically means that the effect is not being rendered as a part of a sequence, but as a single frame.

	
kOfxImageEffectPluginPropGrouping

	Indicates the effect group for this plugin.

	Type - UTF8 string X 1

	Property Set - plugin descriptor (read/write)

	Default - “”

This is purely a user interface hint for the host so it can group related effects on any menus it may have.

	
kOfxImageEffectPropSupportsOverlays

	Indicates whether a host support image effect ImageEffectOverlays.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - This must be one of
	0 - the host won’t allow a plugin to draw a GUI over the output image,

	1 - the host will allow a plugin to draw a GUI over the output image.

	
kOfxImageEffectPluginPropOverlayInteractV1

	Sets the entry for an effect’s overlay interaction.

	Type - pointer X 1

	Property Set - plugin descriptor (read/write)

	Default - NULL

	Valid Values - must point to an OfxPluginEntryPoint

The entry point pointed to must be one that handles custom interaction actions.

	
kOfxImageEffectPluginPropOverlayInteractV2

	Sets the entry for an effect’s overlay interaction. Unlike kOfxImageEffectPluginPropOverlayInteractV1, the overlay interact in the plug-in is expected to implement the kOfxInteractActionDraw using the OfxDrawSuiteV1.

	Type - pointer X 1

	Property Set - plugin descriptor (read/write)

	Default - NULL

	Valid Values - must point to an OfxPluginEntryPoint

The entry point pointed to must be one that handles custom interaction actions.

	
kOfxImageEffectPropSupportsMultiResolution

	Indicates whether a plugin or host support multiple resolution images.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - 1 for plugins

	Valid Values - This must be one of
	0 - the plugin or host does not support multiple resolutions

	1 - the plugin or host does support multiple resolutions

Multiple resolution images mean…
	input and output images can be of any size

	input and output images can be offset from the origin

	
kOfxImageEffectPropSupportsTiles

	Indicates whether a clip, plugin or host supports tiled images.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write), clip descriptor (read/write), instance (read/write)

	Default - to 1 for a plugin and clip

	Valid Values - This must be one of 0 or 1

Tiled images mean that input or output images can contain pixel data that is only a subset of their full RoD.

If a clip or plugin does not support tiled images, then the host should supply full RoD images to the effect whenever it fetches one.

V1.4: It is now possible (defined) to change OfxImageEffectPropSupportsTiles in Instance Changed

	
kOfxImageEffectPropTemporalClipAccess

	Indicates support for random temporal access to images in a clip.

	Type - int X 1

	Property Set - host descriptor (read only), plugin descriptor (read/write), clip descriptor (read/write)

	Default - to 0 for a plugin and clip

	Valid Values - This must be one of 0 or 1

On a host, it indicates whether the host supports temporal access to images.

On a plugin, indicates if the plugin needs temporal access to images.

On a clip, it indicates that the clip needs temporal access to images.

	
kOfxImageEffectPropContext

	Indicates the context a plugin instance has been created for.

	Type - string X 1

	Property Set - image effect instance (read only)

	Valid Values - This must be one of
	kOfxImageEffectContextGenerator

	kOfxImageEffectContextFilter

	kOfxImageEffectContextTransition

	kOfxImageEffectContextPaint

	kOfxImageEffectContextGeneral

	kOfxImageEffectContextRetimer

	
kOfxImageEffectPropPixelDepth

	Indicates the type of each component in a clip or image (after any mapping)

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only)

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

Note that for a clip, this is the value set by the clip preferences action, not the raw ‘actual’ value of the clip.

	
kOfxImageEffectPropComponents

	Indicates the current component type in a clip or image (after any mapping)

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only)

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected, not valid for an image)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

Note that for a clip, this is the value set by the clip preferences action, not the raw ‘actual’ value of the clip.

	
kOfxImagePropUniqueIdentifier

	Uniquely labels an image.

	Type - ASCII string X 1

	Property Set - image instance (read only)

This is host set and allows a plug-in to differentiate between images. This is especially useful if a plugin caches analysed information about the image (for example motion vectors). The plugin can label the cached information with this identifier. If a user connects a different clip to the analysed input, or the image has changed in some way then the plugin can detect this via an identifier change and re-evaluate the cached information.

	
kOfxImageClipPropContinuousSamples

	Clip and action argument property which indicates that the clip can be sampled continously.

	Type - int X 1

	Property Set - clip instance (read only), as an out argument to kOfxImageEffectActionGetClipPreferences action (read/write)

	Default - 0 as an out argument to the kOfxImageEffectActionGetClipPreferences action

	Valid Values - This must be one of…
	0 if the images can only be sampled at discreet times (eg: the clip is a sequence of frames),

	1 if the images can only be sampled continuously (eg: the clip is infact an animating roto spline and can be rendered anywhen).

If this is set to true, then the frame rate of a clip is effectively infinite, so to stop arithmetic errors the frame rate should then be set to 0.

	
kOfxImageClipPropUnmappedPixelDepth

	Indicates the type of each component in a clip before any mapping by clip preferences.

	Type - string X 1

	Property Set - clip instance (read only)

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

This is the actual value of the component depth, before any mapping by clip preferences.

	
kOfxImageClipPropUnmappedComponents

	Indicates the current ‘raw’ component type on a clip before any mapping by clip preferences.

	Type - string X 1

	Property Set - clip instance (read only),

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

	
kOfxImageEffectPropPreMultiplication

	Indicates the premultiplication state of a clip or image.

	Type - string X 1

	Property Set - clip instance (read only), image instance (read only), out args property in the kOfxImageEffectActionGetClipPreferences action (read/write)

	Valid Values - This must be one of
	kOfxImageOpaque - the image is opaque and so has no premultiplication state

	kOfxImagePreMultiplied - the image is premultiplied by its alpha

	kOfxImageUnPreMultiplied - the image is unpremultiplied

See the documentation on clip preferences for more details on how this is used with the kOfxImageEffectActionGetClipPreferences action.

	
kOfxImageOpaque

	Used to flag the alpha of an image as opaque

	
kOfxImagePreMultiplied

	Used to flag an image as premultiplied

	
kOfxImageUnPreMultiplied

	Used to flag an image as unpremultiplied

	
kOfxImageEffectPropSupportedPixelDepths

	Indicates the bit depths support by a plug-in or host.

	Type - string X N

	Property Set - host descriptor (read only), plugin descriptor (read/write)

	Default - plugin descriptor none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

The default for a plugin is to have none set, the plugin must define at least one in its describe action.

	
kOfxImageEffectPropSupportedComponents

	Indicates the components supported by a clip or host,.

	Type - string X N

	Property Set - host descriptor (read only), clip descriptor (read/write)

	Valid Values - This must be one of
	kOfxImageComponentNone (implying a clip is unconnected)

	kOfxImageComponentRGBA

	kOfxImageComponentRGB

	kOfxImageComponentAlpha

This list of strings indicate what component types are supported by a host or are expected as input to a clip.

The default for a clip descriptor is to have none set, the plugin must define at least one in its define function

	
kOfxImageClipPropOptional

	Indicates if a clip is optional.

	Type - int X 1

	Property Set - clip descriptor (read/write)

	Default - 0

	Valid Values - This must be one of 0 or 1

	
kOfxImageClipPropIsMask

	Indicates that a clip is intended to be used as a mask input.

	Type - int X 1

	Property Set - clip descriptor (read/write)

	Default - 0

	Valid Values - This must be one of 0 or 1

Set this property on any clip which will only ever have single channel alpha images fetched from it. Typically on an optional clip such as a junk matte in a keyer.

This property acts as a hint to hosts indicating that they could feed the effect from a rotoshape (or similar) rather than an ‘ordinary’ clip.

	
kOfxImagePropPixelAspectRatio

	The pixel aspect ratio of a clip or image.

	Type - double X 1

	Property Set - clip instance (read only), image instance (read only) and kOfxImageEffectActionGetClipPreferences action out args property (read/write)

	
kOfxImageEffectPropFrameRate

	The frame rate of a clip or instance’s project.

	Type - double X 1

	Property Set - clip instance (read only), effect instance (read only) and kOfxImageEffectActionGetClipPreferences action out args property (read/write)

For an input clip this is the frame rate of the clip.

For an output clip, the frame rate mapped via pixel preferences.

For an instance, this is the frame rate of the project the effect is in.

For the outargs property in the kOfxImageEffectActionGetClipPreferences action, it is used to change the frame rate of the ouput clip.

	
kOfxImageEffectPropUnmappedFrameRate

	Indicates the original unmapped frame rate (frames/second) of a clip.

	Type - double X 1

	Property Set - clip instance (read only),

If a plugin changes the output frame rate in the pixel preferences action, this property allows a plugin to get to the original value.

	
kOfxImageEffectPropFrameStep

	The frame step used for a sequence of renders.

	Type - double X 1

	Property Set - an in argument for the kOfxImageEffectActionBeginSequenceRender action (read only)

	Valid Values - can be any positive value, but typically
	1 for frame based material

	0.5 for field based material

	
kOfxImageEffectPropFrameRange

	The frame range over which a clip has images.

	Type - double X 2

	Property Set - clip instance (read only)

Dimension 0 is the first frame for which the clip can produce valid data.

Dimension 1 is the last frame for which the clip can produce valid data.

	
kOfxImageEffectPropUnmappedFrameRange

	The unmaped frame range over which an output clip has images.

	Type - double X 2

	Property Set - clip instance (read only)

Dimension 0 is the first frame for which the clip can produce valid data.

Dimension 1 is the last frame for which the clip can produce valid data.

If a plugin changes the output frame rate in the pixel preferences action, it will affect the frame range of the output clip, this property allows a plugin to get to the original value.

	
kOfxImageClipPropConnected

	Says whether the clip is actually connected at the moment.

	Type - int X 1

	Property Set - clip instance (read only)

	Valid Values - This must be one of 0 or 1

An instance may have a clip may not be connected to an object that can produce image data. Use this to find out.

Any clip that is not optional will always be connected during a render action. However, during interface actions, even non optional clips may be unconnected.

	
kOfxImageEffectFrameVarying

	Indicates whether an effect will generate different images from frame to frame.

	Type - int X 1

	Property Set - out argument to kOfxImageEffectActionGetClipPreferences action (read/write).

	Default - 0

	Valid Values - This must be one of 0 or 1

This property indicates whether a plugin will generate a different image from frame to frame, even if no parameters or input image changes. For example a generater that creates random noise pixel at each frame.

	
kOfxImageEffectPropRenderScale

	The proxy render scale currently being applied.

	Type - double X 2

	Property Set - an image instance (read only) and as read only an in argument on the following actions,
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	kOfxImageEffectActionIsIdentity

	kOfxImageEffectActionGetRegionOfDefinition

	kOfxImageEffectActionGetRegionsOfInterest

	kOfxActionInstanceChanged

	kOfxInteractActionDraw

	kOfxInteractActionPenMotion

	kOfxInteractActionPenDown

	kOfxInteractActionPenUp

	kOfxInteractActionKeyDown

	kOfxInteractActionKeyUp

	kOfxInteractActionKeyRepeat

	kOfxInteractActionGainFocus

	kOfxInteractActionLoseFocus

This should be applied to any spatial parameters to position them correctly. Not that the ‘x’ value does not include any pixel aspect ratios.

	
kOfxImageEffectPropRenderQualityDraft

	Indicates whether an effect can take quality shortcuts to improve speed.

	Type - int X 1

	Property Set - render calls, host (read-only)

	Default - 0 - 0: Best Quality (1: Draft)

	Valid Values - This must be one of 0 or 1

This property indicates that the host provides the plug-in the option to render in Draft/Preview mode. This is useful for applications that must support fast scrubbing. These allow a plug-in to take short-cuts for improved performance when the situation allows and it makes sense, for example to generate thumbnails with effects applied. For example switch to a cheaper interpolation type or rendering mode. A plugin should expect frames rendered in this manner that will not be stucked in host cache unless the cache is only used in the same draft situations. If an host does not support that property a value of 0 is assumed. Also note that some hosts do implement kOfxImageEffectPropRenderScale - these two properties can be used independently.

	
kOfxImageEffectPropProjectExtent

	The extent of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The extent is the size of the ‘output’ for the current project. See NormalisedCoordinateSystem for more infomation on the project extent.

The extent is in canonical coordinates and only returns the top right position, as the extent is always rooted at 0,0.

For example a PAL SD project would have an extent of 768, 576.

	
kOfxImageEffectPropProjectSize

	The size of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The size of a project is a sub set of the kOfxImageEffectPropProjectExtent. For example a project may be a PAL SD project, but only be a letter-box within that. The project size is the size of this sub window.

The project size is in canonical coordinates.

See NormalisedCoordinateSystem for more infomation on the project extent.

	
kOfxImageEffectPropProjectOffset

	The offset of the current project in canonical coordinates.

	Type - double X 2

	Property Set - a plugin instance (read only)

The offset is related to the kOfxImageEffectPropProjectSize and is the offset from the origin of the project ‘subwindow’.

For example for a PAL SD project that is in letterbox form, the project offset is the offset to the bottom left hand corner of the letter box.

The project offset is in canonical coordinates.

See NormalisedCoordinateSystem for more infomation on the project extent.

	
kOfxImageEffectPropProjectPixelAspectRatio

	The pixel aspect ratio of the current project.

	Type - double X 1

	Property Set - a plugin instance (read only)

	
kOfxImageEffectInstancePropEffectDuration

	The duration of the effect.

	Type - double X 1

	Property Set - a plugin instance (read only)

This contains the duration of the plug-in effect, in frames.

	
kOfxImageClipPropFieldOrder

	Which spatial field occurs temporally first in a frame.

	Type - string X 1

	Property Set - a clip instance (read only)

	Valid Values - This must be one of
	kOfxImageFieldNone - the material is unfielded

	kOfxImageFieldLower - the material is fielded, with image rows 0,2,4…. occuring first in a frame

	kOfxImageFieldUpper - the material is fielded, with image rows line 1,3,5…. occuring first in a frame

	
kOfxImagePropData

	The pixel data pointer of an image.

	Type - pointer X 1

	Property Set - an image instance (read only)

This property contains one of:
	a pointer to memory that is the lower left hand corner of an image

	a pointer to Cuda memory, if the Render action arguments includes kOfxImageEffectPropCudaEnabled=1

	an id<MTLBuffer>, if the Render action arguments includes kOfxImageEffectPropMetalEnabled=1

	a cl_mem, if the Render action arguments includes kOfxImageEffectPropOpenCLEnabled=1

See kOfxImageEffectPropCudaEnabled, kOfxImageEffectPropMetalEnabled and kOfxImageEffectPropOpenCLEnabled

	
kOfxImagePropBounds

	The bounds of an image’s pixels.

	Type - integer X 4

	Property Set - an image instance (read only)

The bounds, in PixelCoordinates, are of the addressable pixels in an image’s data pointer.

The order of the values is x1, y1, x2, y2.

X values are x1 <= X < x2 Y values are y1 <= Y < y2

For less than full frame images, the pixel bounds will be contained by the kOfxImagePropRegionOfDefinition bounds.

	
kOfxImagePropRegionOfDefinition

	The full region of definition of an image.

	Type - integer X 4

	Property Set - an image instance (read only)

An image’s region of definition, in PixelCoordinates, is the full frame area of the image plane that the image covers.

The order of the values is x1, y1, x2, y2.

X values are x1 <= X < x2 Y values are y1 <= Y < y2

The kOfxImagePropBounds property contains the actuall addressable pixels in an image, which may be less than its full region of definition.

	
kOfxImagePropRowBytes

	The number of bytes in a row of an image.

	Type - integer X 1

	Property Set - an image instance (read only)

For various alignment reasons, a row of pixels may need to be padded at the end with several bytes before the next row starts in memory.

This property indicates the number of bytes in a row of pixels. This will be at least sizeof(PIXEL) * (bounds.x2-bounds.x1). Where bounds is fetched from the kOfxImagePropBounds property.

Note that (for CPU images only, not Cuda/Metal/OpenCL buffers, nor textures accessed via the OpenGL Render Suite) row bytes can be negative, which allows hosts with a native top down row order to pass image into OFX without having to repack pixels.

	
kOfxImagePropField

	Which fields are present in the image.

	Type - string X 1

	Property Set - an image instance (read only)

	Valid Values - This must be one of
	kOfxImageFieldNone - the image is an unfielded frame

	kOfxImageFieldBoth - the image is fielded and contains both interlaced fields

	kOfxImageFieldLower - the image is fielded and contains a single field, being the lower field (rows 0,2,4…)

	kOfxImageFieldUpper - the image is fielded and contains a single field, being the upper field (rows 1,3,5…)

	
kOfxImageEffectPluginPropFieldRenderTwiceAlways

	Controls how a plugin renders fielded footage.

	Type - integer X 1

	Property Set - a plugin descriptor (read/write)

	Default - 1

	Valid Values - This must be one of
	0 - the plugin is to have its render function called twice, only if there is animation in any of its parameters

	1 - the plugin is to have its render function called twice always

	
kOfxImageClipPropFieldExtraction

	Controls how a plugin fetched fielded imagery from a clip.

	Type - string X 1

	Property Set - a clip descriptor (read/write)

	Default - kOfxImageFieldDoubled

	Valid Values - This must be one of
	kOfxImageFieldBoth - fetch a full frame interlaced image

	kOfxImageFieldSingle - fetch a single field, making a half height image

	kOfxImageFieldDoubled - fetch a single field, but doubling each line and so making a full height image

This controls how a plug-in wishes to fetch images from a fielded clip, so it can tune it behaviour when it renders fielded footage.

Note that if it fetches kOfxImageFieldSingle and the host stores images natively as both fields interlaced, it can return a single image by doubling rowbytes and tweaking the starting address of the image data. This saves on a buffer copy.

	
kOfxImageEffectPropFieldToRender

	Indicates which field is being rendered.

	Type - string X 1

	Property Set - a read only in argument property to kOfxImageEffectActionRender and kOfxImageEffectActionIsIdentity

	Valid Values - this must be one of
	kOfxImageFieldNone - there are no fields to deal with, all images are full frame

	kOfxImageFieldBoth - the imagery is fielded and both scan lines should be renderred

	kOfxImageFieldLower - the lower field is being rendered (lines 0,2,4…)

	kOfxImageFieldUpper - the upper field is being rendered (lines 1,3,5…)

	
kOfxImageEffectPropRegionOfDefinition

	Used to indicate the region of definition of a plug-in.

	Type - double X 4

	Property Set - a read/write out argument property to the kOfxImageEffectActionGetRegionOfDefinition action

	Default - see kOfxImageEffectActionGetRegionOfDefinition

The order of the values is x1, y1, x2, y2.

This will be in CanonicalCoordinates

	
kOfxImageEffectPropRegionOfInterest

	The value of a region of interest.

	Type - double X 4

	Property Set - a read only in argument property to the kOfxImageEffectActionGetRegionsOfInterest action

A host passes this value into the region of interest action to specify the region it is interested in rendering.

The order of the values is x1, y1, x2, y2.

This will be in CanonicalCoordinates.

	
kOfxImageEffectPropRenderWindow

	The region to be rendered.

	Type - integer X 4

	Property Set - a read only in argument property to the kOfxImageEffectActionRender and kOfxImageEffectActionIsIdentity actions

The order of the values is x1, y1, x2, y2.

This will be in PixelCoordinates

	
kOfxImageFieldNone

	String used to label imagery as having no fields

	
kOfxImageFieldLower

	String used to label the lower field (scan lines 0,2,4…) of fielded imagery

	
kOfxImageFieldUpper

	String used to label the upper field (scan lines 1,3,5…) of fielded imagery

	
kOfxImageFieldBoth

	String used to label both fields of fielded imagery, indicating interlaced footage

	
kOfxImageFieldSingle

	String used to label an image that consists of a single field, and so is half height

	
kOfxImageFieldDoubled

	String used to label an image that consists of a single field, but each scan line is double, and so is full height

	
kOfxImageEffectOutputClipName

	String that is the name of the standard OFX output clip.

	
kOfxImageEffectSimpleSourceClipName

	String that is the name of the standard OFX single source input clip.

	
kOfxImageEffectTransitionSourceFromClipName

	String that is the name of the ‘from’ clip in the OFX transition context.

	
kOfxImageEffectTransitionSourceToClipName

	String that is the name of the ‘from’ clip in the OFX transition context.

	
kOfxImageEffectTransitionParamName

	the name of the mandated ‘Transition’ param for the transition context

	
kOfxImageEffectRetimerParamName

	the name of the mandated ‘SourceTime’ param for the retime context

	
kOfxImageEffectSuite

	the string that names image effect suites, passed to OfxHost::fetchSuite

	
kOfxStatErrImageFormat

	Error code for incorrect image formats.

Typedefs

	
typedef struct OfxImageEffectStruct *OfxImageEffectHandle

	Blind declaration of an OFX image effect.

	
typedef struct OfxImageClipStruct *OfxImageClipHandle

	Blind declaration of an OFX image effect.

	
typedef struct OfxImageMemoryStruct *OfxImageMemoryHandle

	Blind declaration for an handle to image memory returned by the image memory management routines.

	
typedef struct OfxImageEffectSuiteV1 OfxImageEffectSuiteV1

	The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

	
struct OfxImageEffectSuiteV1

	
#include <ofxImageEffect.h>

The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

Public Members

	
OfxStatus (*getPropertySet)(OfxImageEffectHandle imageEffect, OfxPropertySetHandle *propHandle)

	Retrieves the property set for the given image effect.

	imageEffect image effect to get the property set for

	propHandle pointer to a the property set pointer, value is returned here

The property handle is for the duration of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*getParamSet)(OfxImageEffectHandle imageEffect, OfxParamSetHandle *paramSet)

	Retrieves the parameter set for the given image effect.

	imageEffect image effect to get the property set for

	paramSet pointer to a the parameter set, value is returned here

The param set handle is valid for the lifetime of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipDefine)(OfxImageEffectHandle imageEffect, const char *name, OfxPropertySetHandle *propertySet)

	Define a clip to the effect.

	pluginHandle - the handle passed into ‘describeInContext’ action

	name - unique name of the clip to define

	propertySet - a property handle for the clip descriptor will be returned here

This function defines a clip to a host, the returned property set is used to describe various aspects of the clip to the host. Note that this does not create a clip instance.

	Pre:

	
	we are inside the describe in context action.

	Return:

	

	
OfxStatus (*clipGetHandle)(OfxImageEffectHandle imageEffect, const char *name, OfxImageClipHandle *clip, OfxPropertySetHandle *propertySet)

	Get the propery handle of the named input clip in the given instance.

	imageEffect - an instance handle to the plugin

	name - name of the clip, previously used in a clip define call

	clip - where to return the clip

	propertySet if not null, the descriptor handle for a parameter’s property set will be placed here.

The propertySet will have the same value as would be returned by OfxImageEffectSuiteV1::clipGetPropertySet This return a clip handle for the given instance, note that this will \em not be the same as the
clip handle returned by clipDefine and will be distanct to clip handles in any other instance
of the plugin.

Not a valid call in any of the describe actions.

	Pre:

	
	create instance action called,

	name passed to clipDefine for this context,

	not inside describe or describe in context actions.

	Post:

	
	handle will be valid for the life time of the instance.

	
OfxStatus (*clipGetPropertySet)(OfxImageClipHandle clip, OfxPropertySetHandle *propHandle)

	Retrieves the property set for a given clip.

	clip clip effect to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the clip, which is generally the lifetime of the instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipGetImage)(OfxImageClipHandle clip, OfxTime time, const OfxRectD *region, OfxPropertySetHandle *imageHandle)

	Get a handle for an image in a clip at the indicated time and indicated region.

	clip - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - property set containing the image’s data

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

If clipGetImage is called twice with the same parameters, then two separate image handles will be returned, each of which must be release. The underlying implementation could share image data pointers and use reference counting to maintain them.

	Pre:

	
	clip was returned by clipGetHandle

	Post:

	
	image handle is only valid for the duration of the action clipGetImage is called in

	image handle to be disposed of by clipReleaseImage before the action returns

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
OfxStatus (*clipReleaseImage)(OfxPropertySetHandle imageHandle)

	Releases the image handle previously returned by clipGetImage.

	Pre:

	
	imageHandle was returned by clipGetImage

	Post:

	
	all operations on imageHandle will be invalid

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*clipGetRegionOfDefinition)(OfxImageClipHandle clip, OfxTime time, OfxRectD *bounds)

	Returns the spatial region of definition of the clip at the given time.

	clipHandle - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - handle where the image is returned

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

	Pre:

	
	clipHandle was returned by clipGetHandle

	Post:

	
	bounds will be filled the RoD of the clip at the indicated time

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
int (*abort)(OfxImageEffectHandle imageEffect)

	Returns whether to abort processing or not.

	imageEffect - instance of the image effect

A host may want to signal to a plugin that it should stop whatever rendering it is doing and start again. Generally this is done in interactive threads in response to users tweaking some parameter.

This function indicates whether a plugin should stop whatever processing it is doing.

	Return:

	
	0 if the effect should continue whatever processing it is doing

	1 if the effect should abort whatever processing it is doing

	
OfxStatus (*imageMemoryAlloc)(OfxImageEffectHandle instanceHandle, size_t nBytes, OfxImageMemoryHandle *memoryHandle)

	Allocate memory from the host’s image memory pool.

	instanceHandle - effect instance to associate with this memory allocation, may be NULL.

	nBytes - the number of bytes to allocate

	memoryHandle - pointer to the memory handle where a return value is placed

Memory handles allocated by this should be freed by OfxImageEffectSuiteV1::imageMemoryFree. To access the memory behind the handle you need to call OfxImageEffectSuiteV1::imageMemoryLock.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if all went well, a valid memory handle is placed in memoryHandle

	kOfxStatErrBadHandle if instanceHandle is not valid, memoryHandle is set to NULL

	kOfxStatErrMemory if there was not enough memory to satisfy the call, memoryHandle is set to NULL

	
OfxStatus (*imageMemoryFree)(OfxImageMemoryHandle memoryHandle)

	Frees a memory handle and associated memory.

	memoryHandle - memory handle returned by imageMemoryAlloc

This function frees a memory handle and associated memory that was previously allocated via OfxImageEffectSuiteV1::imageMemoryAlloc

If there are outstanding locks, these are ignored and the handle and memory are freed anyway.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was cleanly deleted

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc

	
OfxStatus (*imageMemoryLock)(OfxImageMemoryHandle memoryHandle, void **returnedPtr)

	Lock the memory associated with a memory handle and make it available for use.

	memoryHandle - memory handle returned by imageMemoryAlloc

	returnedPtr - where to the pointer to the locked memory

This function locks them memory associated with a memory handle and returns a pointer to it. The memory will be 16 byte aligned, to allow use of vector operations.

Note that memory locks and unlocks nest.

After the first lock call, the contents of the memory pointer to by returnedPtr is undefined. All subsequent calls to lock will return memory with the same contents as the previous call.

Also, if unlocked, then relocked, the memory associated with a memory handle may be at a different address.

See also OfxImageEffectSuiteV1::imageMemoryUnlock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was locked, a pointer is placed in returnedPtr

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

	kOfxStatErrMemory if there was not enough memory to satisfy the call, *returnedPtr is set to NULL

	
OfxStatus (*imageMemoryUnlock)(OfxImageMemoryHandle memoryHandle)

	Unlock allocated image data.

	allocatedData - pointer to memory previously returned by OfxImageEffectSuiteV1::imageAlloc

This function unlocks a previously locked memory handle. Once completely unlocked, memory associated with a memoryHandle is no longer available for use. Attempting to use it results in undefined behaviour.

Note that locks and unlocks nest, and to fully unlock memory you need to match the count of locks placed upon it.

Also note, if you unlock a completely unlocked handle, it has no effect (ie: the lock count can’t be negative).

If unlocked, then relocked, the memory associated with a memory handle may be at a different address, however the contents will remain the same.

See also OfxImageEffectSuiteV1::imageMemoryLock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was unlocked cleanly,

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

File ofxInteract.h

Contains the API for ofx plugin defined GUIs and interaction.

Defines

	
kOfxInteractSuite

	

	
kOfxInteractPropSlaveToParam

	The set of parameters on which a value change will trigger a redraw for an interact.

	Type - string X N

	Property Set - interact instance property (read/write)

	Default - no values set

	Valid Values - the name of any parameter associated with this interact.

If the interact is representing the state of some set of OFX parameters, then is will need to be redrawn if any of those parameters’ values change. This multi-dimensional property links such parameters to the interact.

The interact can be slaved to multiple parameters (setting index 0, then index 1 etc…)

	
kOfxInteractPropPixelScale

	The size of a real screen pixel under the interact’s canonical projection.

	Type - double X 2

	Property Set - interact instance and actions (read only)

	
kOfxInteractPropBackgroundColour

	The background colour of the application behind an interact instance.

	Type - double X 3

	Property Set - read only on the interact instance and in argument to the kOfxInteractActionDraw action

	Valid Values - from 0 to 1

The components are in the order red, green then blue.

	
kOfxInteractPropSuggestedColour

	The suggested colour to draw a widget in an interact, typically for overlays.

	Type - double X 3

	Property Set - read only on the interact instance

	Default - 1.0

	Valid Values - greater than or equal to 0.0

Some applications allow the user to specify colours of any overlay via a colour picker, this property represents the value of that colour. Plugins are at liberty to use this or not when they draw an overlay.

If a host does not support such a colour, it should return kOfxStatReplyDefault

	
kOfxInteractPropPenPosition

	The position of the pen in an interact.

	Type - double X 2

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

This value passes the postion of the pen into an interact. This is in the interact’s canonical coordinates.

	
kOfxInteractPropPenViewportPosition

	The position of the pen in an interact in viewport coordinates.

	Type - int X 2

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

This value passes the postion of the pen into an interact. This is in the interact’s openGL viewport coordinates, with 0,0 being at the bottom left.

	
kOfxInteractPropPenPressure

	The pressure of the pen in an interact.

	Type - double X 1

	Property Set - read only in argument to the kOfxInteractActionPenMotion, kOfxInteractActionPenDown and kOfxInteractActionPenUp actions

	Valid Values - from 0 (no pressure) to 1 (maximum pressure)

This is used to indicate the status of the ‘pen’ in an interact. If a pen has only two states (eg: a mouse button), these should map to 0.0 and 1.0.

	
kOfxInteractPropBitDepth

	Indicates whether the dits per component in the interact’s openGL frame buffer.

	Type - int X 1

	Property Set - interact instance and descriptor (read only)

	
kOfxInteractPropHasAlpha

	Indicates whether the interact’s frame buffer has an alpha component or not.

	Type - int X 1

	Property Set - interact instance and descriptor (read only)

	Valid Values - This must be one of
	0 indicates no alpha component

	1 indicates an alpha component

	
kOfxActionDescribeInteract

	This action is the first action passed to an interact. It is where an interact defines how it behaves and the resources it needs to function. If not trapped, the default action is for the host to carry on as normal Note that the handle passed in acts as a descriptor for, rather than an instance of the interact.

	Parameters:

	
	handle – handle to the interact descriptor, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	The plugin has been loaded and the effect described.

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatErrMemory in which case describe may be called again after a memory purge

	kOfxStatFailed something was wrong, the host should ignore the interact

	kOfxStatErrFatal

	
kOfxActionCreateInstanceInteract

	This action is the first action passed to an interact instance after its creation. It is there to allow a plugin to create any per-instance data structures it may need.

	Parameters:

	
	handle – handle to the interact instance, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionDescribe has been called on this interact

	Post:

	
	the instance pointer will be valid until the kOfxActionDestroyInstance action is passed to the plug-in with the same instance handle

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored, but all was well anyway

	kOfxStatErrFatal

	kOfxStatErrMemory in which case this may be called again after a memory purge

	kOfxStatFailed in which case the host should ignore this interact

	
kOfxActionDestroyInstanceInteract

	This action is the last passed to an interact’s instance before its destruction. It is there to allow a plugin to destroy any per-instance data structures it may have created.

	Parameters:

	
	handle – handle to the interact instance, cast to an OfxInteractHandle

	inArgs – is redundant and is set to NULL

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the handle,

	the instance has not had any of its members destroyed yet

	Post:

	
	the instance pointer is no longer valid and any operation on it will be undefined

	Returns:

	To some extent, what is returned is moot, a bit like throwing an exception in a C++ destructor, so the host should continue destruction of the instance regardless
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored as the effect had nothing to do

	kOfxStatErrFatal

	kOfxStatFailed something went wrong, but no error code appropriate.

	
kOfxInteractActionDraw

	This action is issued to an interact whenever the host needs the plugin to redraw the given interact.

The interact should either issue OpenGL calls to draw itself, or use DrawSuite calls.

If this is called via kOfxImageEffectPluginPropOverlayInteractV2, drawing MUST use DrawSuite.

If this is called via kOfxImageEffectPluginPropOverlayInteractV1, drawing SHOULD use OpenGL. Some existing plugins may use DrawSuite via kOfxImageEffectPluginPropOverlayInteractV1 if it’s supported by the host, but this is discouraged.

Note that the interact may (in the case of custom parameter GUIS) or may not (in the case of image effect overlays) be required to swap buffers, that is up to the kind of interact.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle

	the openGL context for this interact has been set

	the projection matrix will correspond to the interact’s cannonical view

	Returns:

	
	kOfxStatOK the action was trapped and all was well

	kOfxStatReplyDefault the action was ignored

	kOfxStatErrFatal

	kOfxStatFailed something went wrong, the host should ignore this interact in future

	
kOfxInteractActionPenMotion

	This action is issued whenever the pen moves an the interact’s has focus. It should be issued whether the pen is currently up or down. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition postion of the pen in,

	kOfxInteractPropPenViewportPosition position of the pen in,

	kOfxInteractPropPenPressure the pressure of the pen,

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionPenDown

	This action is issued when a pen transitions for the ‘up’ to the ‘down’ state. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin,
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition position of the pen in

	kOfxInteractPropPenViewportPosition position of the pen in

	kOfxInteractPropPenPressure the pressure of the pen

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK, the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionPenUp

	This action is issued when a pen transitions for the ‘down’ to the ‘up’ state. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin,
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	kOfxInteractPropPenPosition position of the pen in

	kOfxInteractPropPenViewportPosition position of the pen in

	kOfxInteractPropPenPressure the pressure of the pen

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same view.

	Returns:

	
	kOfxStatOK, the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyDown

	This action is issued when a key on the keyboard is depressed. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyUp

	This action is issued when a key on the keyboard is released. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionKeyRepeat

	This action is issued when a key on the keyboard is repeated. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact has been,

	kOfxPropKeySym single integer value representing the key that was manipulated, this may not have a UTF8 representation (eg: a return key)

	kOfxPropKeyString UTF8 string representing a character key that was pressed, some keys have no UTF8 encoding, in which case this is “”

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	the current instance handle has had kOfxInteractActionGainFocus called on it

	Post:

	
	if the instance returns kOfxStatOK, the host should not pass the pen motion to any other interactive object it may own that shares the same focus.

	Returns:

	
	kOfxStatOK , the action was trapped and the host should not pass the event to other objects it may own

	kOfxStatReplyDefault , the action was not trapped and the host can deal with it if it wants

	
kOfxInteractActionGainFocus

	This action is issued when an interact gains input focus. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact is being used on,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels,

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK the action was trapped

	kOfxStatReplyDefault the action was not trapped

	
kOfxInteractActionLoseFocus

	This action is issued when an interact loses input focus. No openGL calls should be issued by the plug-in during this action.

	Parameters:

	
	handle – handle to an interact instance, cast to an OfxInteractHandle

	inArgs – has the following properties on an image effect plugin
	kOfxPropEffectInstance a handle to the effect for which the interact is being used on,

	kOfxInteractPropPixelScale the scale factor to convert cannonical pixels to screen pixels,

	kOfxInteractPropBackgroundColour the background colour of the application behind the current view

	kOfxPropTime the effect time at which changed occured

	kOfxImageEffectPropRenderScale the render scale applied to any image fetched

	outArgs – is redundant and is set to NULL

	Pre:

	
	kOfxActionCreateInstance has been called on the instance handle,

	Returns:

	
	kOfxStatOK the action was trapped

	kOfxStatReplyDefault the action was not trapped

Typedefs

	
typedef struct OfxInteract *OfxInteractHandle

	Blind declaration of an OFX interactive gui.

	
typedef struct OfxInteractSuiteV1 OfxInteractSuiteV1

	OFX suite that allows an effect to interact with an openGL window so as to provide custom interfaces.

	
struct OfxInteractSuiteV1

	
#include <ofxInteract.h>

OFX suite that allows an effect to interact with an openGL window so as to provide custom interfaces.

Public Members

	
OfxStatus (*interactSwapBuffers)(OfxInteractHandle interactInstance)

	Requests an openGL buffer swap on the interact instance.

	
OfxStatus (*interactRedraw)(OfxInteractHandle interactInstance)

	Requests a redraw of the interact instance.

	
OfxStatus (*interactGetPropertySet)(OfxInteractHandle interactInstance, OfxPropertySetHandle *property)

	Gets the property set handle for this interact handle.

File ofxKeySyms.h

Defines

	
kOfxPropKeySym

	Property used to indicate which a key on the keyboard or a button on a button device has been pressed.

	Type - int X 1

	Property Set - an read only in argument for the actions kOfxInteractActionKeyDown, kOfxInteractActionKeyUp and kOfxInteractActionKeyRepeat.

	Valid Values - one of any specified by #defines in the file ofxKeySyms.h.

This property represents a raw key press, it does not represent the ‘character value’ of the key.

This property is associated with a kOfxPropKeyString property, which encodes the UTF8 value for the keypress/button press. Some keys (for example arrow keys) have no UTF8 equivalant.

Some keys, especially on non-english language systems, may have a UTF8 value, but not a keysym values, in these cases, the keysym will have a value of kOfxKey_Unknown, but the kOfxPropKeyString property will still be set with the UTF8 value.

	
kOfxPropKeyString

	This property encodes a single keypresses that generates a unicode code point. The value is stored as a UTF8 string.

	Type - C string X 1, UTF8

	Property Set - an read only in argument for the actions kOfxInteractActionKeyDown, kOfxInteractActionKeyUp and kOfxInteractActionKeyRepeat.

	Valid Values - a UTF8 string representing a single character, or the empty string.

This property represents the UTF8 encode value of a single key press by a user in an OFX interact.

This property is associated with a kOfxPropKeySym which represents an integer value for the key press. Some keys (for example arrow keys) have no UTF8 equivalant, in which case this is set to the empty string “”, and the associate kOfxPropKeySym is set to the equivilant raw key press.

Some keys, especially on non-english language systems, may have a UTF8 value, but not a keysym values, in these cases, the keysym will have a value of kOfxKey_Unknown, but the kOfxPropKeyString property will still be set with the UTF8 value.

	
kOfxKey_Unknown

	

	
kOfxKey_BackSpace

	

	
kOfxKey_Tab

	

	
kOfxKey_Linefeed

	

	
kOfxKey_Clear

	

	
kOfxKey_Return

	

	
kOfxKey_Pause

	

	
kOfxKey_Scroll_Lock

	

	
kOfxKey_Sys_Req

	

	
kOfxKey_Escape

	

	
kOfxKey_Delete

	

	
kOfxKey_Multi_key

	

	
kOfxKey_SingleCandidate

	

	
kOfxKey_MultipleCandidate

	

	
kOfxKey_PreviousCandidate

	

	
kOfxKey_Kanji

	

	
kOfxKey_Muhenkan

	

	
kOfxKey_Henkan_Mode

	

	
kOfxKey_Henkan

	

	
kOfxKey_Romaji

	

	
kOfxKey_Hiragana

	

	
kOfxKey_Katakana

	

	
kOfxKey_Hiragana_Katakana

	

	
kOfxKey_Zenkaku

	

	
kOfxKey_Hankaku

	

	
kOfxKey_Zenkaku_Hankaku

	

	
kOfxKey_Touroku

	

	
kOfxKey_Massyo

	

	
kOfxKey_Kana_Lock

	

	
kOfxKey_Kana_Shift

	

	
kOfxKey_Eisu_Shift

	

	
kOfxKey_Eisu_toggle

	

	
kOfxKey_Zen_Koho

	

	
kOfxKey_Mae_Koho

	

	
kOfxKey_Home

	

	
kOfxKey_Left

	

	
kOfxKey_Up

	

	
kOfxKey_Right

	

	
kOfxKey_Down

	

	
kOfxKey_Prior

	

	
kOfxKey_Page_Up

	

	
kOfxKey_Next

	

	
kOfxKey_Page_Down

	

	
kOfxKey_End

	

	
kOfxKey_Begin

	

	
kOfxKey_Select

	

	
kOfxKey_Print

	

	
kOfxKey_Execute

	

	
kOfxKey_Insert

	

	
kOfxKey_Undo

	

	
kOfxKey_Redo

	

	
kOfxKey_Menu

	

	
kOfxKey_Find

	

	
kOfxKey_Cancel

	

	
kOfxKey_Help

	

	
kOfxKey_Break

	

	
kOfxKey_Mode_switch

	

	
kOfxKey_script_switch

	

	
kOfxKey_Num_Lock

	

	
kOfxKey_KP_Space

	

	
kOfxKey_KP_Tab

	

	
kOfxKey_KP_Enter

	

	
kOfxKey_KP_F1

	

	
kOfxKey_KP_F2

	

	
kOfxKey_KP_F3

	

	
kOfxKey_KP_F4

	

	
kOfxKey_KP_Home

	

	
kOfxKey_KP_Left

	

	
kOfxKey_KP_Up

	

	
kOfxKey_KP_Right

	

	
kOfxKey_KP_Down

	

	
kOfxKey_KP_Prior

	

	
kOfxKey_KP_Page_Up

	

	
kOfxKey_KP_Next

	

	
kOfxKey_KP_Page_Down

	

	
kOfxKey_KP_End

	

	
kOfxKey_KP_Begin

	

	
kOfxKey_KP_Insert

	

	
kOfxKey_KP_Delete

	

	
kOfxKey_KP_Equal

	

	
kOfxKey_KP_Multiply

	

	
kOfxKey_KP_Add

	

	
kOfxKey_KP_Separator

	

	
kOfxKey_KP_Subtract

	

	
kOfxKey_KP_Decimal

	

	
kOfxKey_KP_Divide

	

	
kOfxKey_KP_0

	

	
kOfxKey_KP_1

	

	
kOfxKey_KP_2

	

	
kOfxKey_KP_3

	

	
kOfxKey_KP_4

	

	
kOfxKey_KP_5

	

	
kOfxKey_KP_6

	

	
kOfxKey_KP_7

	

	
kOfxKey_KP_8

	

	
kOfxKey_KP_9

	

	
kOfxKey_F1

	

	
kOfxKey_F2

	

	
kOfxKey_F3

	

	
kOfxKey_F4

	

	
kOfxKey_F5

	

	
kOfxKey_F6

	

	
kOfxKey_F7

	

	
kOfxKey_F8

	

	
kOfxKey_F9

	

	
kOfxKey_F10

	

	
kOfxKey_F11

	

	
kOfxKey_L1

	

	
kOfxKey_F12

	

	
kOfxKey_L2

	

	
kOfxKey_F13

	

	
kOfxKey_L3

	

	
kOfxKey_F14

	

	
kOfxKey_L4

	

	
kOfxKey_F15

	

	
kOfxKey_L5

	

	
kOfxKey_F16

	

	
kOfxKey_L6

	

	
kOfxKey_F17

	

	
kOfxKey_L7

	

	
kOfxKey_F18

	

	
kOfxKey_L8

	

	
kOfxKey_F19

	

	
kOfxKey_L9

	

	
kOfxKey_F20

	

	
kOfxKey_L10

	

	
kOfxKey_F21

	

	
kOfxKey_R1

	

	
kOfxKey_F22

	

	
kOfxKey_R2

	

	
kOfxKey_F23

	

	
kOfxKey_R3

	

	
kOfxKey_F24

	

	
kOfxKey_R4

	

	
kOfxKey_F25

	

	
kOfxKey_R5

	

	
kOfxKey_F26

	

	
kOfxKey_R6

	

	
kOfxKey_F27

	

	
kOfxKey_R7

	

	
kOfxKey_F28

	

	
kOfxKey_R8

	

	
kOfxKey_F29

	

	
kOfxKey_R9

	

	
kOfxKey_F30

	

	
kOfxKey_R10

	

	
kOfxKey_F31

	

	
kOfxKey_R11

	

	
kOfxKey_F32

	

	
kOfxKey_R12

	

	
kOfxKey_F33

	

	
kOfxKey_R13

	

	
kOfxKey_F34

	

	
kOfxKey_R14

	

	
kOfxKey_F35

	

	
kOfxKey_R15

	

	
kOfxKey_Shift_L

	

	
kOfxKey_Shift_R

	

	
kOfxKey_Control_L

	

	
kOfxKey_Control_R

	

	
kOfxKey_Caps_Lock

	

	
kOfxKey_Shift_Lock

	

	
kOfxKey_Meta_L

	

	
kOfxKey_Meta_R

	

	
kOfxKey_Alt_L

	

	
kOfxKey_Alt_R

	

	
kOfxKey_Super_L

	

	
kOfxKey_Super_R

	

	
kOfxKey_Hyper_L

	

	
kOfxKey_Hyper_R

	

	
kOfxKey_space

	

	
kOfxKey_exclam

	

	
kOfxKey_quotedbl

	

	
kOfxKey_numbersign

	

	
kOfxKey_dollar

	

	
kOfxKey_percent

	

	
kOfxKey_ampersand

	

	
kOfxKey_apostrophe

	

	
kOfxKey_quoteright

	

	
kOfxKey_parenleft

	

	
kOfxKey_parenright

	

	
kOfxKey_asterisk

	

	
kOfxKey_plus

	

	
kOfxKey_comma

	

	
kOfxKey_minus

	

	
kOfxKey_period

	

	
kOfxKey_slash

	

	
kOfxKey_0

	

	
kOfxKey_1

	

	
kOfxKey_2

	

	
kOfxKey_3

	

	
kOfxKey_4

	

	
kOfxKey_5

	

	
kOfxKey_6

	

	
kOfxKey_7

	

	
kOfxKey_8

	

	
kOfxKey_9

	

	
kOfxKey_colon

	

	
kOfxKey_semicolon

	

	
kOfxKey_less

	

	
kOfxKey_equal

	

	
kOfxKey_greater

	

	
kOfxKey_question

	

	
kOfxKey_at

	

	
kOfxKey_A

	

	
kOfxKey_B

	

	
kOfxKey_C

	

	
kOfxKey_D

	

	
kOfxKey_E

	

	
kOfxKey_F

	

	
kOfxKey_G

	

	
kOfxKey_H

	

	
kOfxKey_I

	

	
kOfxKey_J

	

	
kOfxKey_K

	

	
kOfxKey_L

	

	
kOfxKey_M

	

	
kOfxKey_N

	

	
kOfxKey_O

	

	
kOfxKey_P

	

	
kOfxKey_Q

	

	
kOfxKey_R

	

	
kOfxKey_S

	

	
kOfxKey_T

	

	
kOfxKey_U

	

	
kOfxKey_V

	

	
kOfxKey_W

	

	
kOfxKey_X

	

	
kOfxKey_Y

	

	
kOfxKey_Z

	

	
kOfxKey_bracketleft

	

	
kOfxKey_backslash

	

	
kOfxKey_bracketright

	

	
kOfxKey_asciicircum

	

	
kOfxKey_underscore

	

	
kOfxKey_grave

	

	
kOfxKey_quoteleft

	

	
kOfxKey_a

	

	
kOfxKey_b

	

	
kOfxKey_c

	

	
kOfxKey_d

	

	
kOfxKey_e

	

	
kOfxKey_f

	

	
kOfxKey_g

	

	
kOfxKey_h

	

	
kOfxKey_i

	

	
kOfxKey_j

	

	
kOfxKey_k

	

	
kOfxKey_l

	

	
kOfxKey_m

	

	
kOfxKey_n

	

	
kOfxKey_o

	

	
kOfxKey_p

	

	
kOfxKey_q

	

	
kOfxKey_r

	

	
kOfxKey_s

	

	
kOfxKey_t

	

	
kOfxKey_u

	

	
kOfxKey_v

	

	
kOfxKey_w

	

	
kOfxKey_x

	

	
kOfxKey_y

	

	
kOfxKey_z

	

	
kOfxKey_braceleft

	

	
kOfxKey_bar

	

	
kOfxKey_braceright

	

	
kOfxKey_asciitilde

	

	
kOfxKey_nobreakspace

	

	
kOfxKey_exclamdown

	

	
kOfxKey_cent

	

	
kOfxKey_sterling

	

	
kOfxKey_currency

	

	
kOfxKey_yen

	

	
kOfxKey_brokenbar

	

	
kOfxKey_section

	

	
kOfxKey_diaeresis

	

	
kOfxKey_copyright

	

	
kOfxKey_ordfeminine

	

	
kOfxKey_guillemotleft

	

	
kOfxKey_notsign

	

	
kOfxKey_hyphen

	

	
kOfxKey_registered

	

	
kOfxKey_macron

	

	
kOfxKey_degree

	

	
kOfxKey_plusminus

	

	
kOfxKey_twosuperior

	

	
kOfxKey_threesuperior

	

	
kOfxKey_acute

	

	
kOfxKey_mu

	

	
kOfxKey_paragraph

	

	
kOfxKey_periodcentered

	

	
kOfxKey_cedilla

	

	
kOfxKey_onesuperior

	

	
kOfxKey_masculine

	

	
kOfxKey_guillemotright

	

	
kOfxKey_onequarter

	

	
kOfxKey_onehalf

	

	
kOfxKey_threequarters

	

	
kOfxKey_questiondown

	

	
kOfxKey_Agrave

	

	
kOfxKey_Aacute

	

	
kOfxKey_Acircumflex

	

	
kOfxKey_Atilde

	

	
kOfxKey_Adiaeresis

	

	
kOfxKey_Aring

	

	
kOfxKey_AE

	

	
kOfxKey_Ccedilla

	

	
kOfxKey_Egrave

	

	
kOfxKey_Eacute

	

	
kOfxKey_Ecircumflex

	

	
kOfxKey_Ediaeresis

	

	
kOfxKey_Igrave

	

	
kOfxKey_Iacute

	

	
kOfxKey_Icircumflex

	

	
kOfxKey_Idiaeresis

	

	
kOfxKey_ETH

	

	
kOfxKey_Eth

	

	
kOfxKey_Ntilde

	

	
kOfxKey_Ograve

	

	
kOfxKey_Oacute

	

	
kOfxKey_Ocircumflex

	

	
kOfxKey_Otilde

	

	
kOfxKey_Odiaeresis

	

	
kOfxKey_multiply

	

	
kOfxKey_Ooblique

	

	
kOfxKey_Ugrave

	

	
kOfxKey_Uacute

	

	
kOfxKey_Ucircumflex

	

	
kOfxKey_Udiaeresis

	

	
kOfxKey_Yacute

	

	
kOfxKey_THORN

	

	
kOfxKey_ssharp

	

	
kOfxKey_agrave

	

	
kOfxKey_aacute

	

	
kOfxKey_acircumflex

	

	
kOfxKey_atilde

	

	
kOfxKey_adiaeresis

	

	
kOfxKey_aring

	

	
kOfxKey_ae

	

	
kOfxKey_ccedilla

	

	
kOfxKey_egrave

	

	
kOfxKey_eacute

	

	
kOfxKey_ecircumflex

	

	
kOfxKey_ediaeresis

	

	
kOfxKey_igrave

	

	
kOfxKey_iacute

	

	
kOfxKey_icircumflex

	

	
kOfxKey_idiaeresis

	

	
kOfxKey_eth

	

	
kOfxKey_ntilde

	

	
kOfxKey_ograve

	

	
kOfxKey_oacute

	

	
kOfxKey_ocircumflex

	

	
kOfxKey_otilde

	

	
kOfxKey_odiaeresis

	

	
kOfxKey_division

	

	
kOfxKey_oslash

	

	
kOfxKey_ugrave

	

	
kOfxKey_uacute

	

	
kOfxKey_ucircumflex

	

	
kOfxKey_udiaeresis

	

	
kOfxKey_yacute

	

	
kOfxKey_thorn

	

	
kOfxKey_ydiaeresis

	

File ofxMemory.h

This file contains the API for general purpose memory allocation from a host.

Defines

	
kOfxMemorySuite

	

Typedefs

	
typedef struct OfxMemorySuiteV1 OfxMemorySuiteV1

	The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

	
struct OfxMemorySuiteV1

	
#include <ofxMemory.h>

The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

Public Members

	
OfxStatus (*memoryAlloc)(void *handle, size_t nBytes, void **allocatedData)

	Allocate memory.

	handle - effect instance to assosciate with this memory allocation, or NULL.

	nBytes - the number of bytes to allocate

	allocatedData - a pointer to the return value. Allocated memory will be alligned for any use.

This function has the host allocate memory using its own memory resources and returns that to the plugin.

	Return:

	
	kOfxStatOK the memory was sucessfully allocated

	kOfxStatErrMemory the request could not be met and no memory was allocated

	
OfxStatus (*memoryFree)(void *allocatedData)

	Frees memory.

	allocatedData - pointer to memory previously returned by OfxMemorySuiteV1::memoryAlloc

This function frees any memory that was previously allocated via OfxMemorySuiteV1::memoryAlloc.

	Return:

	
	kOfxStatOK the memory was sucessfully freed

	kOfxStatErrBadHandle allocatedData was not a valid pointer returned by OfxMemorySuiteV1::memoryAlloc

File ofxMessage.h

This file contains the Host API for end user message communication.

Defines

	
kOfxMessageSuite

	

	
kOfxMessageFatal

	String used to type fatal error messages.

Fatal error messages should only be posted by a plugin when it can no longer continue operation.

	
kOfxMessageError

	String used to type error messages.

Ordinary error messages should be posted when there is an error in operation that is recoverable by user intervention.

	
kOfxMessageWarning

	String used to type warning messages.

Warnings indicate states that allow for operations to proceed, but are not necessarily optimal.

	
kOfxMessageMessage

	String used to type simple ordinary messages.

Ordinary messages simply convey information from the plugin directly to the user.

	
kOfxMessageLog

	String used to type log messages.

Log messages are written out to a log and not to the end user.

	
kOfxMessageQuestion

	String used to type yes/no messages.

The host is to enter a modal state which waits for the user to respond yes or no. The OfxMessageSuiteV1::message function which posted the message will only return after the user responds. When asking a question, the OfxStatus code returned by the message function will be,
	kOfxStatReplyYes - if the user replied ‘yes’ to the question

	kOfxStatReplyNo - if the user replied ‘no’ to the question

	some error code if an error was encounterred

It is an error to post a question message if the plugin is not in an interactive session.

Typedefs

	
typedef struct OfxMessageSuiteV1 OfxMessageSuiteV1

	The OFX suite that allows a plug-in to pass messages back to a user. The V2 suite extends on this in a backwards compatible manner.

	
typedef struct OfxMessageSuiteV2 OfxMessageSuiteV2

	The OFX suite that allows a plug-in to pass messages back to a user.

This extends OfxMessageSuiteV1, and should be considered a replacement to version 1.

Note that this suite has been extended in backwards compatible manner, so that a host can return this struct for both V1 and V2.

	
struct OfxMessageSuiteV1

	
#include <ofxMessage.h>

The OFX suite that allows a plug-in to pass messages back to a user. The V2 suite extends on this in a backwards compatible manner.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a message on the host, using printf style varargs.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

	
struct OfxMessageSuiteV2

	
#include <ofxMessage.h>

The OFX suite that allows a plug-in to pass messages back to a user.

This extends OfxMessageSuiteV1, and should be considered a replacement to version 1.

Note that this suite has been extended in backwards compatible manner, so that a host can return this struct for both V1 and V2.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a transient message on the host, using printf style varargs. Same as the V1 message suite call.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*setPersistentMessage)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a persistent message on an effect, using printf style varargs, and set error states. New for V2 message suite.

	handle - effect instance handle the message should be associated with, may NOT be null,

	messageType - string describing the kind of message to post, should be one of…
	kOfxMessageError

	kOfxMessageWarning

	kOfxMessageMessage

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

Persistent messages are associated with an effect handle until explicitly cleared by an effect. So if an error message is posted the error state, and associated message will persist and be displayed on the effect appropriately. (eg: draw a node in red on a node based compostor and display the message when clicked on).

If messageType is error or warning, associated error states should be flagged on host applications. Posting an error message implies that the host cannot proceeed, a warning allows the host to proceed, whilst a simple message should have no stop anything.

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*clearPersistentMessage)(void *handle)

	Clears any persistent message on an effect handle that was set by OfxMessageSuiteV2::setPersistentMessage. New for V2 message suite.

	handle - effect instance handle messages should be cleared from.

	handle - effect handle (descriptor or instance)

Clearing a message will clear any associated error state.

	Return:

	
	kOfxStatOK - if the message was sucessfully cleared

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be cleared for some reason

File ofxMultiThread.h

This file contains the Host Suite for threading

Defines

	
kOfxMultiThreadSuite

	

Typedefs

	
typedef struct OfxMutex *OfxMutexHandle

	Mutex blind data handle.

	
void() OfxThreadFunctionV1 (unsigned int threadIndex, unsigned int threadMax, void *customArg)

	The function type to passed to the multi threading routines.

	threadIndex unique index of this thread, will be between 0 and threadMax

	threadMax to total number of threads executing this function

	customArg the argument passed into multiThread

A function of this type is passed to OfxMultiThreadSuiteV1::multiThread to be launched in multiple threads.

	
typedef struct OfxMultiThreadSuiteV1 OfxMultiThreadSuiteV1

	OFX suite that provides simple SMP style multi-processing.

	
struct OfxMultiThreadSuiteV1

	
#include <ofxMultiThread.h>

OFX suite that provides simple SMP style multi-processing.

Public Members

	
OfxStatus (*multiThread)(OfxThreadFunctionV1 func, unsigned int nThreads, void *customArg)

	Function to spawn SMP threads.

	func The function to call in each thread.

	nThreads The number of threads to launch

	customArg The paramter to pass to customArg of func in each thread.

This function will spawn nThreads separate threads of computation (typically one per CPU) to allow something to perform symmetric multi processing. Each thread will call ‘func’ passing in the index of the thread and the number of threads actually launched.

multiThread will not return until all the spawned threads have returned. It is up to the host how it waits for all the threads to return (busy wait, blocking, whatever).

nThreads can be more than the value returned by multiThreadNumCPUs, however the threads will be limitted to the number of CPUs returned by multiThreadNumCPUs.

This function cannot be called recursively.

	Return:

	
	kOfxStatOK, the function func has executed and returned sucessfully

	kOfxStatFailed, the threading function failed to launch

	kOfxStatErrExists, failed in an attempt to call multiThread recursively,

	
OfxStatus (*multiThreadNumCPUs)(unsigned int *nCPUs)

	Function which indicates the number of CPUs available for SMP processing.

	nCPUs pointer to an integer where the result is returned

This value may be less than the actual number of CPUs on a machine, as the host may reserve other CPUs for itself.

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to get the number of CPUs

	
OfxStatus (*multiThreadIndex)(unsigned int *threadIndex)

	Function which indicates the index of the current thread.

	threadIndex pointer to an integer where the result is returned

This function returns the thread index, which is the same as the threadIndex argument passed to the OfxThreadFunctionV1.

If there are no threads currently spawned, then this function will set threadIndex to 0

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to return an index

	
int (*multiThreadIsSpawnedThread)(void)

	Function to enquire if the calling thread was spawned by multiThread.

	Return:

	
	0 if the thread is not one spawned by multiThread

	1 if the thread was spawned by multiThread

	
OfxStatus (*mutexCreate)(OfxMutexHandle *mutex, int lockCount)

	Create a mutex.

	mutex - where the new handle is returned

	count - initial lock count on the mutex. This can be negative.

Creates a new mutex with lockCount locks on the mutex intially set.

	Return:

	
	kOfxStatOK - mutex is now valid and ready to go

	
OfxStatus (*mutexDestroy)(const OfxMutexHandle mutex)

	Destroy a mutex.

Destroys a mutex intially created by mutexCreate.

	Return:

	
	kOfxStatOK - if it destroyed the mutex

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexLock)(const OfxMutexHandle mutex)

	Blocking lock on the mutex.

This trys to lock a mutex and blocks the thread it is in until the lock suceeds.

A sucessful lock causes the mutex’s lock count to be increased by one and to block any other calls to lock the mutex until it is unlocked.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexUnLock)(const OfxMutexHandle mutex)

	Unlock the mutex.

This unlocks a mutex. Unlocking a mutex decreases its lock count by one.

	Return:

	
	kOfxStatOK if it released the lock

	kOfxStatErrBadHandle if the handle was bad

	
OfxStatus (*mutexTryLock)(const OfxMutexHandle mutex)

	Non blocking attempt to lock the mutex.

This attempts to lock a mutex, if it cannot, it returns and says so, rather than blocking.

A sucessful lock causes the mutex’s lock count to be increased by one, if the lock did not suceed, the call returns immediately and the lock count remains unchanged.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatFailed - if it did not get the lock

	kOfxStatErrBadHandle - if the handle was bad

File ofxOld.h

Defines

	
kOfxImageComponentYUVA

	String to label images with YUVA components —ofxImageEffects.h.

	
Deprecated:

	
	removed in v1.4. Note, this has been deprecated in v1.3

	
kOfxImageEffectPropInAnalysis

	Indicates whether an effect is performing an analysis pass. —ofxImageEffects.h.

	Type - int X 1

	Property Set - plugin instance (read/write)

	Default - to 0

	Valid Values - This must be one of 0 or 1

	
Deprecated:

	
	This feature has been deprecated - officially commented out v1.4.

	
kOfxInteractPropViewportSize

	The size of an interact’s openGL viewport — ofxInteract.h.

	Type - int X 2

	Property Set - read only property on the interact instance and in argument to all the interact actions.

	
Deprecated:

	
	V1.3: This property is the redundant and its use will be deprecated in future releases. V1.4: Removed

	
kOfxParamDoubleTypeNormalisedX

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeX V1.4: Removed

	
kOfxParamDoubleTypeNormalisedY

	value for the kOfxParamPropDoubleType property, indicating a size normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeY V1.4: Removed

	
kOfxParamDoubleTypeNormalisedXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the X dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXAbsolute V1.4: Removed

	
kOfxParamDoubleTypeNormalisedYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position normalised to the Y dimension. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeYAbsolute V1.4: Removed

	
kOfxParamDoubleTypeNormalisedXY

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for 2D params. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of ::OfxParamDoubleTypeXY V1.4: Removed

	
kOfxParamDoubleTypeNormalisedXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating normalisation to the X and Y dimension for a 2D param that can be interpretted as an absolute spatial position. See kOfxParamPropDoubleType. — ofxParam.h

	
Deprecated:

	
	V1.3: Deprecated in favour of kOfxParamDoubleTypeXYAbsolute V1.4: Removed

Typedefs

	
typedef struct OfxYUVAColourB OfxYUVAColourB

	Defines an 8 bit per component YUVA pixel — ofxPixels.h Deprecated in 1.3, removed in 1.4.

	
typedef struct OfxYUVAColourS OfxYUVAColourS

	Defines an 16 bit per component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

	
typedef struct OfxYUVAColourF OfxYUVAColourF

	Defines an floating point component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

	
struct OfxYUVAColourB

	
#include <ofxOld.h>

Defines an 8 bit per component YUVA pixel — ofxPixels.h Deprecated in 1.3, removed in 1.4.

Public Members

	
unsigned char y

	

	
unsigned char u

	

	
unsigned char v

	

	
unsigned char a

	

	
struct OfxYUVAColourS

	
#include <ofxOld.h>

Defines an 16 bit per component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

Public Members

	
unsigned short y

	

	
unsigned short u

	

	
unsigned short v

	

	
unsigned short a

	

	
struct OfxYUVAColourF

	
#include <ofxOld.h>

Defines an floating point component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

Public Members

	
float y

	

	
float u

	

	
float v

	

	
float a

	

File ofxOpenGLRender.h

Defines

	
_ofxOpenGLRender_h_

	

File ofxParam.h

This header contains the suite definition to manipulate host side parameters.

For more details go see ParametersPage

Defines

	
kOfxParameterSuite

	string value to the kOfxPropType property for all parameters

	
kOfxTypeParameter

	string value on the kOfxPropType property for all parameter definitions (ie: the handle returned in describe)

	
kOfxTypeParameterInstance

	string value on the kOfxPropType property for all parameter instances

	
kOfxParamTypeInteger

	String to identify a param as a single valued integer.

	
kOfxParamTypeDouble

	String to identify a param as a Single valued floating point parameter

	
kOfxParamTypeBoolean

	String to identify a param as a Single valued boolean parameter.

	
kOfxParamTypeChoice

	String to identify a param as a Single valued, ‘one-of-many’ parameter.

	
kOfxParamTypeRGBA

	String to identify a param as a Red, Green, Blue and Alpha colour parameter.

	
kOfxParamTypeRGB

	String to identify a param as a Red, Green and Blue colour parameter.

	
kOfxParamTypeDouble2D

	String to identify a param as a Two dimensional floating point parameter.

	
kOfxParamTypeInteger2D

	String to identify a param as a Two dimensional integer point parameter.

	
kOfxParamTypeDouble3D

	String to identify a param as a Three dimensional floating point parameter.

	
kOfxParamTypeInteger3D

	String to identify a param as a Three dimensional integer parameter.

	
kOfxParamTypeString

	String to identify a param as a String (UTF8) parameter.

	
kOfxParamTypeCustom

	String to identify a param as a Plug-in defined parameter.

	
kOfxParamTypeGroup

	String to identify a param as a Grouping parameter.

	
kOfxParamTypePage

	String to identify a param as a page parameter.

	
kOfxParamTypePushButton

	String to identify a param as a PushButton parameter.

	
kOfxParamHostPropSupportsCustomAnimation

	Indicates if the host supports animation of custom parameters.

	Type - int X 1

	Property Set - host descriptor (read only)

	Value Values - 0 or 1

	
kOfxParamHostPropSupportsStringAnimation

	Indicates if the host supports animation of string params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsBooleanAnimation

	Indicates if the host supports animation of boolean params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsChoiceAnimation

	Indicates if the host supports animation of choice params.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

	
kOfxParamHostPropSupportsCustomInteract

	Indicates if the host supports custom interacts for parameters.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values - 0 or 1

Currently custom interacts for parameters can only be drawn using OpenGL. APIs will be added later to support using the new Draw Suite.

	
kOfxParamHostPropMaxParameters

	Indicates the maximum numbers of parameters available on the host.

	Type - int X 1

	Property Set - host descriptor (read only)

If set to -1 it implies unlimited number of parameters.

	
kOfxParamHostPropMaxPages

	Indicates the maximum number of parameter pages.

	Type - int X 1

	Property Set - host descriptor (read only)

If there is no limit to the number of pages on a host, set this to -1.

Hosts that do not support paged parameter layout should set this to zero.

	
kOfxParamHostPropPageRowColumnCount

	This indicates the number of parameter rows and coloumns on a page.

	Type - int X 2

	Property Set - host descriptor (read only)

If the host has supports paged parameter layout, used dimension 0 as the number of columns per page and dimension 1 as the number of rows per page.

	
kOfxParamPageSkipRow

	Pseudo parameter name used to skip a row in a page layout.

Passed as a value to the kOfxParamPropPageChild property.

See ParametersInterfacesPagedLayouts for more details.

	
kOfxParamPageSkipColumn

	Pseudo parameter name used to skip a row in a page layout.

Passed as a value to the kOfxParamPropPageChild property.

See ParametersInterfacesPagedLayouts for more details.

	
kOfxParamPropInteractV1

	Overrides the parameter’s standard user interface with the given interact.

	Type - pointer X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - NULL

	Valid Values - must point to a OfxPluginEntryPoint

If set, the parameter’s normal interface is replaced completely by the interact gui.

Currently custom interacts for parameters can only be drawn using OpenGL. APIs will be added later to support using the new Draw Suite.

	
kOfxParamPropInteractSize

	The size of a parameter instance’s custom interface in screen pixels.

	Type - double x 2

	Property Set - plugin parameter instance (read only)

This is set by a host to indicate the current size of a custom interface if the plug-in has one. If not this is set to (0,0).

	
kOfxParamPropInteractSizeAspect

	The preferred aspect ratio of a parameter’s custom interface.

	Type - double x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1.0

	Valid Values - greater than or equal to 0.0

If set to anything other than 0.0, the custom interface for this parameter will be of a size with this aspect ratio (x size/y size).

	
kOfxParamPropInteractMinimumSize

	The minimum size of a parameter’s custom interface, in screen pixels.

	Type - double x 2

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 10,10

	Valid Values - greater than (0, 0)

Any custom interface will not be less than this size.

	
kOfxParamPropInteractPreferedSize

	The preferred size of a parameter’s custom interface.

	Type - int x 2

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 10,10

	Valid Values - greater than (0, 0)

A host should attempt to set a parameter’s custom interface on a parameter to be this size if possible, otherwise it will be of kOfxParamPropInteractSizeAspect aspect but larger than kOfxParamPropInteractMinimumSize.

	
kOfxParamPropType

	The type of a parameter.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read only) and instance (read only)

This string will be set to the type that the parameter was create with.

	
kOfxParamPropAnimates

	Flags whether a parameter can animate.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

A plug-in uses this property to indicate if a parameter is able to animate.

	
kOfxParamPropCanUndo

	Flags whether changes to a parameter should be put on the undo/redo stack.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

	
kOfxPropParamSetNeedsSyncing

	States whether the plugin needs to resync its private data.

	Type - int X 1

	Property Set - param set instance (read/write)

	Default - 0

	Valid Values -
	0 - no need to sync

	1 - paramset is not synced

The plugin should set this flag to true whenever any internal state has not been flushed to the set of params.

The host will examine this property each time it does a copy or save operation on the instance. If it is set to 1, the host will call SyncPrivateData and then set it to zero before doing the copy/save. If it is set to 0, the host will assume that the param data correctly represents the private state, and will not call SyncPrivateData before copying/saving. If this property is not set, the host will always call SyncPrivateData before copying or saving the effect (as if the property were set to 1 — but the host will not create or modify the property).

	
kOfxParamPropIsAnimating

	Flags whether a parameter is currently animating.

	Type - int x 1

	Property Set - plugin parameter instance (read only)

	Valid Values - 0 or 1

Set by a host on a parameter instance to indicate if the parameter has a non-constant value set on it. This can be as a consequence of animation or of scripting modifying the value, or of a parameter being connected to an expression in the host.

	
kOfxParamPropPluginMayWrite

	Flags whether the plugin will attempt to set the value of a parameter in some callback or analysis pass.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 0

	Valid Values - 0 or 1

This is used to tell the host whether the plug-in is going to attempt to set the value of the parameter.

	
Deprecated:

	
	v1.4: deprecated - to be removed in 1.5

	
kOfxParamPropPersistant

	Flags whether the value of a parameter should persist.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

This is used to tell the host whether the value of the parameter is important and should be save in any description of the plug-in.

	
kOfxParamPropEvaluateOnChange

	Flags whether changing a parameter’s value forces an evalution (ie: render),.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write only)

	Default - 1

	Valid Values - 0 or 1

This is used to indicate if the value of a parameter has any affect on an effect’s output, eg: the parameter may be purely for GUI purposes, and so changing its value should not trigger a re-render.

	
kOfxParamPropSecret

	Flags whether a parameter should be exposed to a user,.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write)

	Default - 0

	Valid Values - 0 or 1

If secret, a parameter is not exposed to a user in any interface, but should otherwise behave as a normal parameter.

Secret params are typically used to hide important state detail that would otherwise be unintelligible to a user, for example the result of a statical analysis that might need many parameters to store.

	
kOfxParamPropScriptName

	The value to be used as the id of the parameter in a host scripting language.

	Type - ASCII C string X 1,

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - the unique name the parameter was created with.

	Valid Values - ASCII string unique to all parameters in the plug-in.

Many hosts have a scripting language that they use to set values of parameters and more. If so, this is the name of a parameter in such scripts.

	
kOfxParamPropCacheInvalidation

	Specifies how modifying the value of a param will affect any output of an effect over time.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - kOfxParamInvalidateValueChange

	Valid Values - This must be one of
	kOfxParamInvalidateValueChange

	kOfxParamInvalidateValueChangeToEnd

	kOfxParamInvalidateAll

Imagine an effect with an animating parameter in a host that caches rendered output. Think of the what happens when you add a new key frame. -If the parameter represents something like an absolute position, the cache will only need to be invalidated for the range of frames that keyframe affects.
	If the parameter represents something like a speed which is integrated, the cache will be invalidated from the keyframe until the end of the clip.

	There are potentially other situations where the entire cache will need to be invalidated (though I can’t think of one off the top of my head).

	
kOfxParamInvalidateValueChange

	Used as a value for the kOfxParamPropCacheInvalidation property.

	
kOfxParamInvalidateValueChangeToEnd

	Used as a value for the kOfxParamPropCacheInvalidation property.

	
kOfxParamInvalidateAll

	Used as a value for the kOfxParamPropCacheInvalidation property.

	
kOfxParamPropHint

	A hint to the user as to how the parameter is to be used.

	Type - UTF8 C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - “”

	
kOfxParamPropDefault

	The default value of a parameter.

	Type - The type is dependant on the parameter type as is the dimension.

	Property Set - plugin parameter descriptor (read/write) and instance (read/write only),

	Default - 0 cast to the relevant type (or “” for strings and custom parameters)

The exact type and dimension is dependant on the type of the parameter. These are….
	kOfxParamTypeInteger - integer property of one dimension

	kOfxParamTypeDouble - double property of one dimension

	kOfxParamTypeBoolean - integer property of one dimension

	kOfxParamTypeChoice - integer property of one dimension

	kOfxParamTypeRGBA - double property of four dimensions

	kOfxParamTypeRGB - double property of three dimensions

	kOfxParamTypeDouble2D - double property of two dimensions

	kOfxParamTypeInteger2D - integer property of two dimensions

	kOfxParamTypeDouble3D - double property of three dimensions

	kOfxParamTypeInteger3D - integer property of three dimensions

	kOfxParamTypeString - string property of one dimension

	kOfxParamTypeCustom - string property of one dimension

	kOfxParamTypeGroup - does not have this property

	kOfxParamTypePage - does not have this property

	kOfxParamTypePushButton - does not have this property

	
kOfxParamPropDoubleType

	Describes how the double parameter should be interpreted by a host.

	Type - C string X 1

	Default - kOfxParamDoubleTypePlain

	Property Set - 1D, 2D and 3D float plugin parameter descriptor (read/write) and instance (read only),

	Valid Values -This must be one of
	kOfxParamDoubleTypePlain - parameter has no special interpretation,

	kOfxParamDoubleTypeAngle - parameter is to be interpretted as an angle,

	kOfxParamDoubleTypeScale - parameter is to be interpretted as a scale factor,

	kOfxParamDoubleTypeTime - parameter represents a time value (1D only),

	kOfxParamDoubleTypeAbsoluteTime - parameter represents an absolute time value (1D only),

	kOfxParamDoubleTypeX - size wrt to the project’s X dimension (1D only), in canonical coordinates,

	kOfxParamDoubleTypeXAbsolute - absolute position on the X axis (1D only), in canonical coordinates,

	kOfxParamDoubleTypeY - size wrt to the project’s Y dimension(1D only), in canonical coordinates,

	kOfxParamDoubleTypeYAbsolute - absolute position on the Y axis (1D only), in canonical coordinates,

	kOfxParamDoubleTypeXY - size in 2D (2D only), in canonical coordinates,

	kOfxParamDoubleTypeXYAbsolute - an absolute position on the image plane, in canonical coordinates.

Double parameters can be interpreted in several different ways, this property tells the host how to do so and thus gives hints as to the interface of the parameter.

	
kOfxParamDoubleTypePlain

	value for the kOfxParamPropDoubleType property, indicating the parameter has no special interpretation and should be interpretted as a raw numeric value.

	
kOfxParamDoubleTypeScale

	value for the kOfxParamPropDoubleType property, indicating the parameter is to be interpreted as a scale factor. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeAngle

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as an angle. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeTime

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as a time. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeAbsoluteTime

	value for the kOfxParamDoubleTypeAngle property, indicating the parameter is to be interpreted as an absolute time from the start of the effect. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeX

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the X dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeY

	value for the kOfxParamPropDoubleType property, indicating a size in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeXAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the X dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeYAbsolute

	value for the kOfxParamPropDoubleType property, indicating an absolute position in canonical coords in the Y dimension. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeXY

	value for the kOfxParamPropDoubleType property, indicating a 2D size in canonical coords. See kOfxParamPropDoubleType.

	
kOfxParamDoubleTypeXYAbsolute

	value for the kOfxParamPropDoubleType property, indicating a 2D position in canonical coords. See kOfxParamPropDoubleType.

	
kOfxParamPropDefaultCoordinateSystem

	Describes in which coordinate system a spatial double parameter’s default value is specified.

	Type - C string X 1

	Default - kOfxParamCoordinatesCanonical

	Property Set - Non normalised spatial double parameters, ie: any double param who’s kOfxParamPropDoubleType is set to one of…
	kOfxParamDoubleTypeX

	kOfxParamDoubleTypeXAbsolute

	kOfxParamDoubleTypeY

	kOfxParamDoubleTypeYAbsolute

	kOfxParamDoubleTypeXY

	kOfxParamDoubleTypeXYAbsolute

	Valid Values - This must be one of
	kOfxParamCoordinatesCanonical - the default is in canonical coords

	kOfxParamCoordinatesNormalised - the default is in normalised coordinates

This allows a spatial param to specify what its default is, so by saying normalised and “0.5” it would be in the ‘middle’, by saying canonical and 100 it would be at value 100 independent of the size of the image being applied to.

	
kOfxParamCoordinatesCanonical

	Define the canonical coordinate system.

	
kOfxParamCoordinatesNormalised

	Define the normalised coordinate system.

	
kOfxParamPropHasHostOverlayHandle

	A flag to indicate if there is a host overlay UI handle for the given parameter.

	Type - int x 1

	Property Set - plugin parameter descriptor (read only)

	Valid Values - 0 or 1

If set to 1, then the host is flagging that there is some sort of native user overlay interface handle available for the given parameter.

	
kOfxParamPropUseHostOverlayHandle

	A flag to indicate that the host should use a native UI overlay handle for the given parameter.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write only) and instance (read only)

	Default - 0

	Valid Values - 0 or 1

If set to 1, then a plugin is flaging to the host that the host should use a native UI overlay handle for the given parameter. A plugin can use this to keep a native look and feel for parameter handles. A plugin can use kOfxParamPropHasHostOverlayHandle to see if handles are available on the given parameter.

	
kOfxParamPropShowTimeMarker

	Enables the display of a time marker on the host’s time line to indicate the value of the absolute time param.

	Type - int x 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write)

	Default - 0

	Valid Values - 0 or 1

If a double parameter is has kOfxParamPropDoubleType set to kOfxParamDoubleTypeAbsoluteTime, then this indicates whether any marker should be made visible on the host’s time line.

	
kOfxPluginPropParamPageOrder

	Sets the parameter pages and order of pages.

	Type - C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - the names of any page param in the plugin

This property sets the preferred order of parameter pages on a host. If this is never set, the preferred order is the order the parameters were declared in.

	
kOfxParamPropPageChild

	The names of the parameters included in a page parameter.

	Type - C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - “”

	Valid Values - the names of any parameter that is not a group or page, as well as kOfxParamPageSkipRow and kOfxParamPageSkipColumn

This is a property on parameters of type kOfxParamTypePage, and tells the page what parameters it contains. The parameters are added to the page from the top left, filling in columns as we go. The two pseudo param names kOfxParamPageSkipRow and kOfxParamPageSkipColumn are used to control layout.

Note parameters can appear in more than one page.

	
kOfxParamPropParent

	The name of a parameter’s parent group.

	Type - C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - “”, which implies the “root” of the hierarchy,

	Valid Values - the name of a parameter with type of kOfxParamTypeGroup

Hosts that have hierarchical layouts of their params use this to recursively group parameter.

By default parameters are added in order of declaration to the ‘root’ hierarchy. This property is used to reparent params to a predefined param of type kOfxParamTypeGroup.

	
kOfxParamPropGroupOpen

	Whether the initial state of a group is open or closed in a hierarchical layout.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only)

	Default - 1

	Valid Values - 0 or 1

This is a property on parameters of type kOfxParamTypeGroup, and tells the group whether it should be open or closed by default.

	
kOfxParamPropEnabled

	Used to enable a parameter in the user interface.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 1

	Valid Values - 0 or 1

When set to 0 a user should not be able to modify the value of the parameter. Note that the plug-in itself can still change the value of a disabled parameter.

	
kOfxParamPropDataPtr

	A private data pointer that the plug-in can store its own data behind.

	Type - pointer X 1

	Property Set - plugin parameter instance (read/write),

	Default - NULL

This data pointer is unique to each parameter instance, so two instances of the same parameter do not share the same data pointer. Use it to hang any needed private data structures.

	
kOfxParamPropChoiceOption

	Set an option in a choice parameter.

	Type - UTF8 C string X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the property is empty with no options set.

This property contains the set of options that will be presented to a user from a choice parameter. See ParametersChoice for more details.

	
kOfxParamPropMin

	The minimum value for a numeric parameter.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the smallest possible value corresponding to the parameter type (eg: INT_MIN for an integer, -DBL_MAX for a double parameter)

Setting this will also reset kOfxParamPropDisplayMin.

	
kOfxParamPropMax

	The maximum value for a numeric parameter.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the largest possible value corresponding to the parameter type (eg: INT_MAX for an integer, DBL_MAX for a double parameter)

Setting this will also reset :;kOfxParamPropDisplayMax.

	
kOfxParamPropDisplayMin

	The minimum value for a numeric parameter on any user interface.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the smallest possible value corresponding to the parameter type (eg: INT_MIN for an integer, -DBL_MAX for a double parameter)

If a user interface represents a parameter with a slider or similar, this should be the minumum bound on that slider.

	
kOfxParamPropDisplayMax

	The maximum value for a numeric parameter on any user interface.

	Type - int or double X N

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - the largest possible value corresponding to the parameter type (eg: INT_MAX for an integer, DBL_MAX for a double parameter)

If a user interface represents a parameter with a slider or similar, this should be the maximum bound on that slider.

	
kOfxParamPropIncrement

	The granularity of a slider used to represent a numeric parameter.

	Type - double X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 1

	Valid Values - any greater than 0.

This value is always in canonical coordinates for double parameters that are normalised.

	
kOfxParamPropDigits

	How many digits after a decimal point to display for a double param in a GUI.

	Type - int X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read/write),

	Default - 2

	Valid Values - any greater than 0.

This applies to double params of any dimension.

	
kOfxParamPropDimensionLabel

	Label for individual dimensions on a multidimensional numeric parameter.

	Type - UTF8 C string X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - “x”, “y” and “z”

	Valid Values - any

Use this on 2D and 3D double and integer parameters to change the label on an individual dimension in any GUI for that parameter.

	
kOfxParamPropIsAutoKeying

	Will a value change on the parameter add automatic keyframes.

	Type - int X 1

	Property Set - plugin parameter instance (read only),

	Valid Values - 0 or 1

This is set by the host simply to indicate the state of the property.

	
kOfxParamPropCustomInterpCallbackV1

	A pointer to a custom parameter’s interpolation function.

	Type - pointer X 1

	Property Set - plugin parameter descriptor (read/write) and instance (read only),

	Default - NULL

	Valid Values - must point to a OfxCustomParamInterpFuncV1

It is an error not to set this property in a custom parameter during a plugin’s define call if the custom parameter declares itself to be an animating parameter.

	
kOfxParamPropStringMode

	Used to indicate the type of a string parameter.

	Type - C string X 1

	Property Set - plugin string parameter descriptor (read/write) and instance (read only),

	Default - kOfxParamStringIsSingleLine

	Valid Values - This must be one of the following
	kOfxParamStringIsSingleLine

	kOfxParamStringIsMultiLine

	kOfxParamStringIsFilePath

	kOfxParamStringIsDirectoryPath

	kOfxParamStringIsLabel

	kOfxParamStringIsRichTextFormat

	
kOfxParamPropStringFilePathExists

	Indicates string parameters of file or directory type need that file to exist already.

	Type - int X 1

	Property Set - plugin string parameter descriptor (read/write) and instance (read only),

	Default - 1

	Valid Values - 0 or 1

If set to 0, it implies the user can specify a new file name, not just a pre-existing one.

	
kOfxParamStringIsSingleLine

	Used to set a string parameter to be single line, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsMultiLine

	Used to set a string parameter to be multiple line, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsFilePath

	Used to set a string parameter to be a file path, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsDirectoryPath

	Used to set a string parameter to be a directory path, value to be passed to a kOfxParamPropStringMode property.

	
kOfxParamStringIsLabel

	Use to set a string parameter to be a simple label, value to be passed to a kOfxParamPropStringMode property

	
kOfxParamStringIsRichTextFormat

	String value on the OfxParamPropStringMode property of a string parameter (added in 1.3)

	
kOfxParamPropCustomValue

	Used by interpolating custom parameters to get and set interpolated values.

	Type - C string X 1 or 2

This property is on the inArgs property and outArgs property of a OfxCustomParamInterpFuncV1 and in both cases contains the encoded value of a custom parameter. As an inArgs property it will have two values, being the two keyframes to interpolate. As an outArgs property it will have a single value and the plugin should fill this with the encoded interpolated value of the parameter.

	
kOfxParamPropInterpolationTime

	Used by interpolating custom parameters to indicate the time a key occurs at.

	Type - double X 2

	Property Set - inArgs parameter of a OfxCustomParamInterpFuncV1 (read only)

The two values indicate the absolute times the surrounding keyframes occur at. The keyframes are encoded in a kOfxParamPropCustomValue property.

	
kOfxParamPropInterpolationAmount

	Property used by OfxCustomParamInterpFuncV1 to indicate the amount of interpolation to perform.

	Type - double X 1

	Property Set - inArgs parameter of a OfxCustomParamInterpFuncV1 (read only)

	Valid Values - from 0 to 1

This property indicates how far between the two kOfxParamPropCustomValue keys to interpolate.

Typedefs

	
typedef struct OfxParamStruct *OfxParamHandle

	Blind declaration of an OFX param.

	
typedef struct OfxParamSetStruct *OfxParamSetHandle

	Blind declaration of an OFX parameter set.

	
OfxStatus() OfxCustomParamInterpFuncV1 (OfxParamSetHandle instance, OfxPropertySetHandle inArgs, OfxPropertySetHandle outArgs)

	Function prototype for custom parameter interpolation callback functions.

	instance the plugin instance that this parameter occurs in

	inArgs handle holding the following properties…
	kOfxPropName - the name of the custom parameter to interpolate

	kOfxPropTime - absolute time the interpolation is ocurring at

	kOfxParamPropCustomValue - string property that gives the value of the two keyframes to interpolate, in this case 2D

	kOfxParamPropInterpolationTime - 2D double property that gives the time of the two keyframes we are interpolating

	kOfxParamPropInterpolationAmount - 1D double property indicating how much to interpolate between the two keyframes

	outArgs handle holding the following properties to be set
	kOfxParamPropCustomValue - the value of the interpolated custom parameter, in this case 1D

This function allows custom parameters to animate by performing interpolation between keys.

The plugin needs to parse the two strings encoding keyframes on either side of the time we need a value for. It should then interpolate a new value for it, encode it into a string and set the kOfxParamPropCustomValue property with this on the outArgs handle.

The interp value is a linear interpolation amount, however his may be derived from a cubic (or other) curve.

	
typedef struct OfxParameterSuiteV1 OfxParameterSuiteV1

	The OFX suite used to define and manipulate user visible parameters.

	
struct OfxParameterSuiteV1

	
#include <ofxParam.h>

The OFX suite used to define and manipulate user visible parameters.

Keyframe Handling

These functions allow the plug-in to delete and get information about keyframes.

To set keyframes, use paramSetValueAtTime().

paramGetKeyTime and paramGetKeyIndex use indices to refer to keyframes. Keyframes are stored by the host in increasing time order, so time(kf[i]) < time(kf[i+1]). Keyframe indices will change whenever keyframes are added, deleted, or moved in time, whether by the host or by the plug-in. They may vary between actions if the user changes a keyframe. The keyframe indices will not change within a single action.

	
OfxStatus (*paramGetNumKeys)(OfxParamHandle paramHandle, unsigned int *numberOfKeys)

	Returns the number of keyframes in the parameter.

	paramHandle parameter handle to interogate

	numberOfKeys pointer to integer where the return value is placed

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Returns the number of keyframes in the parameter.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetKeyTime)(OfxParamHandle paramHandle, unsigned int nthKey, OfxTime *time)

	Returns the time of the nth key.

	paramHandle parameter handle to interogate

	nthKey which key to ask about (0 to paramGetNumKeys -1), ordered by time

	time pointer to OfxTime where the return value is placed

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - the nthKey does not exist

	
OfxStatus (*paramGetKeyIndex)(OfxParamHandle paramHandle, OfxTime time, int direction, int *index)

	Finds the index of a keyframe at/before/after a specified time.

	paramHandle parameter handle to search

	time what time to search from

	direction
	== 0 indicates search for a key at the indicated time (some small delta)

	> 0 indicates search for the next key after the indicated time

	< 0 indicates search for the previous key before the indicated time

	index pointer to an integer which in which the index is returned set to -1 if no key was found

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatFailed - if the search failed to find a key

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramDeleteKey)(OfxParamHandle paramHandle, OfxTime time)

	Deletes a keyframe if one exists at the given time.

	paramHandle parameter handle to delete the key from

	time time at which a keyframe is

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - no key at the given time

	
OfxStatus (*paramDeleteAllKeys)(OfxParamHandle paramHandle)

	Deletes all keyframes from a parameter.

	paramHandle parameter handle to delete the keys from

	name parameter to delete the keyframes frome is

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

Public Members

	
OfxStatus (*paramDefine)(OfxParamSetHandle paramSet, const char *paramType, const char *name, OfxPropertySetHandle *propertySet)

	Defines a new parameter of the given type in a describe action.

	paramSet handle to the parameter set descriptor that will hold this parameter

	paramType type of the parameter to create, one of the kOfxParamType* #defines

	name unique name of the parameter

	propertySet if not null, a pointer to the parameter descriptor’s property set will be placed here.

This function defines a parameter in a parameter set and returns a property set which is used to describe that parameter.

This function does not actually create a parameter, it only says that one should exist in any subsequent instances. To fetch an parameter instance paramGetHandle must be called on an instance.

This function can always be called in one of a plug-in’s “describe” functions which defines the parameter sets common to all instances of a plugin.

	Return:

	
	kOfxStatOK - the parameter was created correctly

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrExists - if a parameter of that name exists already in this plugin

	kOfxStatErrUnknown - if the type is unknown

	kOfxStatErrUnsupported - if the type is known but unsupported

	
OfxStatus (*paramGetHandle)(OfxParamSetHandle paramSet, const char *name, OfxParamHandle *param, OfxPropertySetHandle *propertySet)

	Retrieves the handle for a parameter in a given parameter set.

	paramSet instance of the plug-in to fetch the property handle from

	name parameter to ask about

	param pointer to a param handle, the value is returned here

	propertySet if not null, a pointer to the parameter’s property set will be placed here.

Parameter handles retrieved from an instance are always distinct in each instance. The paramter handle is valid for the life-time of the instance. Parameter handles in instances are distinct from paramter handles in plugins. You cannot call this in a plugin’s describe function, as it needs an instance to work on.

	Return:

	
	kOfxStatOK - the parameter was found and returned

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramSetGetPropertySet)(OfxParamSetHandle paramSet, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter set.

	paramSet parameter set to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

Note

The property handle belonging to a parameter set is the same as the property handle belonging to the plugin instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetPropertySet)(OfxParamHandle param, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter.

	param parameter to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the parameter, which is the lifetime of the instance that owns the parameter

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetValue)(OfxParamHandle paramHandle, ...)

	Gets the current value of a parameter,.

	paramHandle parameter handle to fetch value from

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs … argument needs to be pointer to C variables of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example…

 OfxParamHandle myDoubleParam, *myColourParam;
 ofxHost->paramGetHandle(instance, "myDoubleParam", &myDoubleParam);
 double myDoubleValue;
 ofxHost->paramGetValue(myDoubleParam, &myDoubleValue);
 ofxHost->paramGetHandle(instance, "myColourParam", &myColourParam);
 double myR, myG, myB;
 ofxHost->paramGetValue(myColourParam, &myR, &myG, &myB);

Note

paramGetValue should only be called from within a kOfxActionInstanceChanged or interact action and never from the render actions (which should always use paramGetValueAtTime).

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the value of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetDerivative)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the derivative of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s derivative

This gets the derivative of the parameter at the indicated time.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can have their derivatives found.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetIntegral)(OfxParamHandle paramHandle, OfxTime time1, OfxTime time2, ...)

	Gets the integral of a parameter over a specific time range,.

	paramHandle parameter handle to fetch integral from

	time1 where to start evaluating the integral

	time2 where to stop evaluating the integral

	… one or more pointers to variables of the relevant type to hold the parameter’s integral

This gets the integral of the parameter over the specified time range.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can be integrated.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValue)(OfxParamHandle paramHandle, ...)

	Sets the current value of a parameter.

	paramHandle parameter handle to set value in

	… one or more variables of the relevant type to hold the parameter’s value

This sets the current value of a parameter. The varargs … argument needs to be values of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example… ofxHost->paramSetValue(instance, "myDoubleParam", double(10));
 ofxHost->paramSetValue(instance, "myColourParam", double(pix.r), double(pix.g), double(pix.b));

Note

paramSetValue should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Keyframes the value of a parameter at a specific time.

	paramHandle parameter handle to set value in

	time at what point in time to set the keyframe

	… one or more variables of the relevant type to hold the parameter’s value

This sets a keyframe in the parameter at the indicated time to have the indicated value. The varargs … argument needs to be values of the relevant type for this parameter. See the note on OfxParameterSuiteV1::paramSetValue for more detail

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Note

paramSetValueAtTime should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramCopy)(OfxParamHandle paramTo, OfxParamHandle paramFrom, OfxTime dstOffset, const OfxRangeD *frameRange)

	Copies one parameter to another, including any animation etc…

	paramTo parameter to set

	paramFrom parameter to copy from

	dstOffset temporal offset to apply to keys when writing to the paramTo

	frameRange if paramFrom has animation, and frameRange is not null, only this range of keys will be copied

This copies the value of paramFrom to paramTo, including any animation it may have. All the previous values in paramTo will be lost.

To choose all animation in paramFrom set frameRange to [0, 0]

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Pre:

	
	Both parameters must be of the same type.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramEditBegin)(OfxParamSetHandle paramSet, const char *name)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

	name label to attach to any undo/redo string UTF8

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the start of a set of a parameter changes that should be considered part of a single undo/redo block.

See also OfxParameterSuiteV1::paramEditEnd

Note

paramEditBegin should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

	
OfxStatus (*paramEditEnd)(OfxParamSetHandle paramSet)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the end of a set of parameter changes that should be considerred part of a single undo/redo block

See also OfxParameterSuiteV1::paramEditBegin

Note

paramEditEnd should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

File ofxParametricParam.h

This header file defines the optional OFX extension to define and manipulate parametric parameters.

Defines

	
kOfxParametricParameterSuite

	string value to the kOfxPropType property for all parameters

	
kOfxParamTypeParametric

	String to identify a param as a single valued integer.

	
kOfxParamPropParametricDimension

	The dimension of a parametric param.

	Type - int X 1

	Property Set - parametric param descriptor (read/write) and instance (read only)

	default - 1

	Value Values - greater than 0

This indicates the dimension of the parametric param.

	
kOfxParamPropParametricUIColour

	The colour of parametric param curve interface in any UI.

	Type - double X N

	Property Set - parametric param descriptor (read/write) and instance (read only)

	default - unset,

	Value Values - three values for each dimension (see kOfxParamPropParametricDimension) being interpretted as R, G and B of the colour for each curve drawn in the UI.

This sets the colour of a parametric param curve drawn a host user interface. A colour triple is needed for each dimension of the oparametric param.

If not set, the host should generally draw these in white.

	
kOfxParamPropParametricInteractBackground

	Interact entry point to draw the background of a parametric parameter.

	Type - pointer X 1

	Property Set - plug-in parametric parameter descriptor (read/write) and instance (read only),

	Default - NULL, which implies the host should draw its default background.

Defines a pointer to an interact which will be used to draw the background of a parametric parameter’s user interface. None of the pen or keyboard actions can ever be called on the interact.

The openGL transform will be set so that it is an orthographic transform that maps directly to the ‘parametric’ space, so that ‘x’ represents the parametric position and ‘y’ represents the evaluated value.

	
kOfxParamHostPropSupportsParametricAnimation

	Property on the host to indicate support for parametric parameter animation.

	Type - int X 1

	Property Set - host descriptor (read only)

	Valid Values
	0 indicating the host does not support animation of parmetric params,

	1 indicating the host does support animation of parmetric params,

	
kOfxParamPropParametricRange

	Property to indicate the min and max range of the parametric input value.

	Type - double X 2

	Property Set - parameter descriptor (read/write only), and instance (read only)

	Default Value - (0, 1)

	Valid Values - any pair of numbers so that the first is less than the second.

This controls the min and max values that the parameter will be evaluated at.

Typedefs

	
typedef struct OfxParametricParameterSuiteV1 OfxParametricParameterSuiteV1

	The OFX suite used to define and manipulate ‘parametric’ parameters.

This is an optional suite.

Parametric parameters are in effect ‘functions’ a plug-in can ask a host to arbitrarily evaluate for some value ‘x’. A classic use case would be for constructing look-up tables, a plug-in would ask the host to evaluate one at multiple values from 0 to 1 and use that to fill an array.

A host would probably represent this to a user as a cubic curve in a standard curve editor interface, or possibly through scripting. The user would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are returning values based on some arbitrary argument orthogonal to time, so to evaluate such a param, you need to pass a parametric position and time.

Often, you would want such a parametric parameter to be multi-dimensional, for example, a colour look-up table might want three values, one for red, green and blue. Rather than declare three separate parametric parameters, it would be better to have one such parameter with multiple values in it.

The major complication with these parameters is how to allow a plug-in to set values, and defaults. The default default value of a parametric curve is to be an identity lookup. If a plugin wishes to set a different default value for a curve, it can use the suite to set key/value pairs on the descriptor of the param. When a new instance is made, it will have these curve values as a default.

	
struct OfxParametricParameterSuiteV1

	
#include <ofxParametricParam.h>

The OFX suite used to define and manipulate ‘parametric’ parameters.

This is an optional suite.

Parametric parameters are in effect ‘functions’ a plug-in can ask a host to arbitrarily evaluate for some value ‘x’. A classic use case would be for constructing look-up tables, a plug-in would ask the host to evaluate one at multiple values from 0 to 1 and use that to fill an array.

A host would probably represent this to a user as a cubic curve in a standard curve editor interface, or possibly through scripting. The user would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are returning values based on some arbitrary argument orthogonal to time, so to evaluate such a param, you need to pass a parametric position and time.

Often, you would want such a parametric parameter to be multi-dimensional, for example, a colour look-up table might want three values, one for red, green and blue. Rather than declare three separate parametric parameters, it would be better to have one such parameter with multiple values in it.

The major complication with these parameters is how to allow a plug-in to set values, and defaults. The default default value of a parametric curve is to be an identity lookup. If a plugin wishes to set a different default value for a curve, it can use the suite to set key/value pairs on the descriptor of the param. When a new instance is made, it will have these curve values as a default.

Public Members

	
OfxStatus (*parametricParamGetValue)(OfxParamHandle param, int curveIndex, OfxTime time, double parametricPosition, double *returnValue)

	Evaluates a parametric parameter.

	param handle to the parametric parameter

	curveIndex which dimension to evaluate

	time the time to evaluate to the parametric param at

	parametricPosition the position to evaluate the parametric param at

	returnValue pointer to a double where a value is returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNControlPoints)(OfxParamHandle param, int curveIndex, double time, int *returnValue)

	Returns the number of control points in the parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	returnValue pointer to an integer where the value is returned.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double *key, double *value)

	Returns the key/value pair of the nth control point.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	nthCtl the nth control point to get the value of

	key pointer to a double where the key will be returned

	value pointer to a double where the value will be returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamSetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double key, double value, bool addAnimationKey)

	Modifies an existing control point on a curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	nthCtl the control point to modify

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This modifies an existing control point. Note that by changing key, the order of the control point may be modified (as you may move it before or after anther point). So be careful when iterating over a curves control points and you change a key.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamAddControlPoint)(OfxParamHandle param, int curveIndex, double time, double key, double value, bool addAnimationKey)

	Adds a control point to the curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This will add a new control point to the given dimension of a parametric parameter. If a key exists sufficiently close to ‘key’, then it will be set to the indicated control point.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamDeleteControlPoint)(OfxParamHandle param, int curveIndex, int nthCtl)

	Deletes the nth control point from a parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to delete

	nthCtl the control point to delete

	
OfxStatus (*parametricParamDeleteAllControlPoints)(OfxParamHandle param, int curveIndex)

	Delete all curve control points on the given param.

	param handle to the parametric parameter

	curveIndex which dimension to clear

File ofxPixels.h

Contains pixel struct definitions

Typedefs

	
typedef struct OfxRGBAColourB OfxRGBAColourB

	Defines an 8 bit per component RGBA pixel.

	
typedef struct OfxRGBAColourS OfxRGBAColourS

	Defines a 16 bit per component RGBA pixel.

	
typedef struct OfxRGBAColourF OfxRGBAColourF

	Defines a floating point component RGBA pixel.

	
typedef struct OfxRGBAColourD OfxRGBAColourD

	Defines a double precision floating point component RGBA pixel.

	
typedef struct OfxRGBColourB OfxRGBColourB

	Defines an 8 bit per component RGB pixel.

	
typedef struct OfxRGBColourS OfxRGBColourS

	Defines a 16 bit per component RGB pixel.

	
typedef struct OfxRGBColourF OfxRGBColourF

	Defines a floating point component RGB pixel.

	
typedef struct OfxRGBColourD OfxRGBColourD

	Defines a double precision floating point component RGB pixel.

	
struct OfxRGBAColourB

	
#include <ofxPixels.h>

Defines an 8 bit per component RGBA pixel.

Public Members

	
unsigned char r

	

	
unsigned char g

	

	
unsigned char b

	

	
unsigned char a

	

	
struct OfxRGBAColourS

	
#include <ofxPixels.h>

Defines a 16 bit per component RGBA pixel.

Public Members

	
unsigned short r

	

	
unsigned short g

	

	
unsigned short b

	

	
unsigned short a

	

	
struct OfxRGBAColourF

	
#include <ofxPixels.h>

Defines a floating point component RGBA pixel.

Public Members

	
float r

	

	
float g

	

	
float b

	

	
float a

	

	
struct OfxRGBAColourD

	
#include <ofxPixels.h>

Defines a double precision floating point component RGBA pixel.

Public Members

	
double r

	

	
double g

	

	
double b

	

	
double a

	

	
struct OfxRGBColourB

	
#include <ofxPixels.h>

Defines an 8 bit per component RGB pixel.

Public Members

	
unsigned char r

	

	
unsigned char g

	

	
unsigned char b

	

	
struct OfxRGBColourS

	
#include <ofxPixels.h>

Defines a 16 bit per component RGB pixel.

Public Members

	
unsigned short r

	

	
unsigned short g

	

	
unsigned short b

	

	
struct OfxRGBColourF

	
#include <ofxPixels.h>

Defines a floating point component RGB pixel.

Public Members

	
float r

	

	
float g

	

	
float b

	

	
struct OfxRGBColourD

	
#include <ofxPixels.h>

Defines a double precision floating point component RGB pixel.

Public Members

	
double r

	

	
double g

	

	
double b

	

File ofxProgress.h

Defines

	
kOfxProgressSuite

	suite for displaying a progress bar

Typedefs

	
typedef struct OfxProgressSuiteV1 OfxProgressSuiteV1

	A suite that provides progress feedback from a plugin to an application.

A plugin instance can initiate, update and close a progress indicator with this suite.

This is an optional suite in the Image Effect API.

API V1.4: Amends the documentation of progress suite V1 so that it is expected that it can be raised in a modal manner and have a “cancel” button when invoked in instanceChanged. Plugins that perform analysis post an appropriate message, raise the progress monitor in a modal manner and should poll to see if processing has been aborted. Any cancellation should be handled gracefully by the plugin (eg: reset analysis parameters to default values), clear allocated memory…

Many hosts already operate as described above. kOfxStatReplyNo should be returned to the plugin during progressUpdate when the user presses cancel.

Suite V2: Adds an ID that can be looked up for internationalisation and so on. When a new version is introduced, because plug-ins need to support old versions, and plug-in’s new releases are not necessary in synch with hosts (or users don’t immediately update), best practice is to support the 2 suite versions. That is, the plugin should check if V2 exists; if not then check if V1 exists. This way a graceful transition is guaranteed. So plugin should fetchSuite passing 2, (OfxProgressSuiteV2*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,2); and if no success pass (OfxProgressSuiteV1*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,1);

	
typedef struct OfxProgressSuiteV2 OfxProgressSuiteV2

	

	
struct OfxProgressSuiteV1

	
#include <ofxProgress.h>

A suite that provides progress feedback from a plugin to an application.

A plugin instance can initiate, update and close a progress indicator with this suite.

This is an optional suite in the Image Effect API.

API V1.4: Amends the documentation of progress suite V1 so that it is expected that it can be raised in a modal manner and have a “cancel” button when invoked in instanceChanged. Plugins that perform analysis post an appropriate message, raise the progress monitor in a modal manner and should poll to see if processing has been aborted. Any cancellation should be handled gracefully by the plugin (eg: reset analysis parameters to default values), clear allocated memory…

Many hosts already operate as described above. kOfxStatReplyNo should be returned to the plugin during progressUpdate when the user presses cancel.

Suite V2: Adds an ID that can be looked up for internationalisation and so on. When a new version is introduced, because plug-ins need to support old versions, and plug-in’s new releases are not necessary in synch with hosts (or users don’t immediately update), best practice is to support the 2 suite versions. That is, the plugin should check if V2 exists; if not then check if V1 exists. This way a graceful transition is guaranteed. So plugin should fetchSuite passing 2, (OfxProgressSuiteV2*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,2); and if no success pass (OfxProgressSuiteV1*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,1);

Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *label)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	label - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

	
struct OfxProgressSuiteV2

	
#include <ofxProgress.h>

Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *message, const char *messageid)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	message - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	messageId - plugin-specified id to associate with this message. If overriding the message in an XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur. New in V2 of this suite.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

File ofxProperty.h

Contains the API for manipulating generic properties. For more details see PropertiesPage.

Defines

	
kOfxPropertySuite

	

Typedefs

	
typedef struct OfxPropertySuiteV1 OfxPropertySuiteV1

	The OFX suite used to access properties on OFX objects.

	
struct OfxPropertySuiteV1

	
#include <ofxProperty.h>

The OFX suite used to access properties on OFX objects.

Public Members

	
OfxStatus (*propSetPointer)(OfxPropertySetHandle properties, const char *property, int index, void *value)

	Set a single value in a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetString)(OfxPropertySetHandle properties, const char *property, int index, const char *value)

	Set a single value in a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDouble)(OfxPropertySetHandle properties, const char *property, int index, double value)

	Set a single value in a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetInt)(OfxPropertySetHandle properties, const char *property, int index, int value)

	Set a single value in an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void *const *value)

	Set multiple values of the pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetStringN)(OfxPropertySetHandle properties, const char *property, int count, const char *const *value)

	Set multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, const double *value)

	Set multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetIntN)(OfxPropertySetHandle properties, const char *property, int count, const int *value)

	Set multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propGetPointer)(OfxPropertySetHandle properties, const char *property, int index, void **value)

	Get a single value from a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetString)(OfxPropertySetHandle properties, const char *property, int index, char **value)

	Get a single value of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDouble)(OfxPropertySetHandle properties, const char *property, int index, double *value)

	Get a single value of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetInt)(OfxPropertySetHandle properties, const char *property, int index, int *value)

	Get a single value of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void **value)

	Get multiple values of a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetStringN)(OfxPropertySetHandle properties, const char *property, int count, char **value)

	Get multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, double *value)

	Get multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetIntN)(OfxPropertySetHandle properties, const char *property, int count, int *value)

	Get multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propReset)(OfxPropertySetHandle properties, const char *property)

	Resets all dimensions of a property to its default value.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	
OfxStatus (*propGetDimension)(OfxPropertySetHandle properties, const char *property, int *count)

	Gets the dimension of the property.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	count is a pointer to an integer where the value is returned

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

File ofxTimeLine.h

Defines

	
kOfxTimeLineSuite

	Name of the time line suite.

Typedefs

	
typedef struct OfxTimeLineSuiteV1 OfxTimeLineSuiteV1

	Suite to control timelines.

This suite is used to enquire and control a timeline associated with a plug-in instance.

This is an optional suite in the Image Effect API.

	
struct OfxTimeLineSuiteV1

	
#include <ofxTimeLine.h>

Suite to control timelines.

This suite is used to enquire and control a timeline associated with a plug-in instance.

This is an optional suite in the Image Effect API.

Public Members

	
OfxStatus (*getTime)(void *instance, double *time)

	Get the time value of the timeline that is controlling to the indicated effect.

	instance - is the instance of the effect changing the timeline, cast to a void *

	time - a pointer through which the timeline value should be returned

This function returns the current time value of the timeline associated with the effect instance.

	Return:

	
	kOfxStatOK - the time enquiry was sucessful

	kOfxStatFailed - the enquiry failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	
OfxStatus (*gotoTime)(void *instance, double time)

	Move the timeline control to the indicated time.

	instance - is the instance of the effect changing the timeline, cast to a void *

	time - is the time to change the timeline to. This is in the temporal coordinate system of the effect.

This function moves the timeline to the indicated frame and returns. Any side effects of the timeline change are also triggered and completed before this returns (for example instance changed actions and renders if the output of the effect is being viewed).

	Return:

	
	kOfxStatOK - the time was changed sucessfully, will all side effects if the change completed

	kOfxStatFailed - the change failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	kOfxStatErrValue - the time was an illegal value

	
OfxStatus (*getTimeBounds)(void *instance, double *firstTime, double *lastTime)

	Get the current bounds on a timeline.

	instance - is the instance of the effect changing the timeline, cast to a void *

	firstTime - is the first time on the timeline. This is in the temporal coordinate system of the effect.

	lastTime - is last time on the timeline. This is in the temporal coordinate system of the effect.

This function

	Return:

	
	kOfxStatOK - the time enquiry was sucessful

	kOfxStatFailed - the enquiry failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

Struct list

	Struct OfxDialogSuiteV1

	Struct OfxDrawSuiteV1

	Struct OfxHost

	Struct OfxImageEffectOpenGLRenderSuiteV1

	Struct OfxImageEffectSuiteV1

	Struct OfxInteractSuiteV1

	Struct OfxMemorySuiteV1

	Struct OfxMessageSuiteV1

	Struct OfxMessageSuiteV2

	Struct OfxMultiThreadSuiteV1

	Struct OfxParameterSuiteV1

	Struct OfxParametricParameterSuiteV1

	Struct OfxPlugin

	Struct OfxPointD

	Struct OfxPointI

	Struct OfxProgressSuiteV1

	Struct OfxProgressSuiteV2

	Struct OfxPropertySuiteV1

	Struct OfxRGBAColourB

	Struct OfxRGBAColourD

	Struct OfxRGBAColourF

	Struct OfxRGBAColourS

	Struct OfxRGBColourB

	Struct OfxRGBColourD

	Struct OfxRGBColourF

	Struct OfxRGBColourS

	Struct OfxRangeD

	Struct OfxRangeI

	Struct OfxRectD

	Struct OfxRectI

	Struct OfxTimeLineSuiteV1

	Struct OfxYUVAColourB

	Struct OfxYUVAColourF

	Struct OfxYUVAColourS

Struct OfxDialogSuiteV1

	
struct OfxDialogSuiteV1

	
Public Members

	
OfxStatus (*RequestDialog)(void *user_data)

	Request the host to send a kOfxActionDialog to the plugin from its UI thread.

	Pre:

	
	user_data: A pointer to any user data

	Post:

	

	Return:

	
	kOfxStatOK - The host has queued the request and will send an ‘OfxActionDialog’

	kOfxStatFailed - The host has no provisio for this or can not deal with it currently.

	
OfxStatus (*NotifyRedrawPending)(void)

	Inform the host of redraw event so it can redraw itself If the host runs fullscreen in OpenGL, it would otherwise not receive redraw event when a dialog in front would catch all events.

	Pre:

	

	Post:

	

	Return:

	
	kOfxStatReplyDefault

Struct OfxDrawSuiteV1

	
struct OfxDrawSuiteV1

	OFX suite that allows an effect to draw to a host-defined display context.

Public Members

	
OfxStatus (*getColour)(OfxDrawContextHandle context, OfxStandardColour std_colour, OfxRGBAColourF *colour)

	Retrieves the host’s desired draw colour for.

	context - the draw context

	std_colour - the desired colour type

	colour - the returned RGBA colour

	Return:

	
	kOfxStatOK - the colour was returned

	kOfxStatErrValue - std_colour was invalid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setColour)(OfxDrawContextHandle context, const OfxRGBAColourF *colour)

	Sets the colour for future drawing operations (lines, filled shapes and text)

	context - the draw context

	colour - the RGBA colour

The host should use “over” compositing when using a non-opaque colour.

	Return:

	
	kOfxStatOK - the colour was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineWidth)(OfxDrawContextHandle context, float width)

	Sets the line width for future line drawing operations.

	context - the draw context

	width - the line width

Use width 0 for a single pixel line or non-zero for a smooth line of the desired width

The host should adjust for screen density.

	Return:

	
	kOfxStatOK - the width was changed

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*setLineStipple)(OfxDrawContextHandle context, OfxDrawLineStipplePattern pattern)

	Sets the stipple pattern for future line drawing operations.

	context - the draw context

	pattern - the desired stipple pattern

	Return:

	
	kOfxStatOK - the pattern was changed

	kOfxStatErrValue - pattern was not valid

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*draw)(OfxDrawContextHandle context, OfxDrawPrimitive primitive, const OfxPointD *points, int point_count)

	Draws a primitive of the desired type.

	context - the draw context

	primitive - the desired primitive

	points - the array of points in the primitive

	point_count - the number of points in the array

kOfxDrawPrimitiveLines - like GL_LINES, n points draws n/2 separated lines kOfxDrawPrimitiveLineStrip - like GL_LINE_STRIP, n points draws n-1 connected lines kOfxDrawPrimitiveLineLoop - like GL_LINE_LOOP, n points draws n connected lines kOfxDrawPrimitiveRectangle - draws an axis-aligned filled rectangle defined by 2 opposite corner points kOfxDrawPrimitivePolygon - like GL_POLYGON, draws a filled n-sided polygon kOfxDrawPrimitiveEllipse - draws a axis-aligned elliptical line (not filled) within the rectangle defined by 2 opposite corner points

	Return:

	
	kOfxStatOK - the draw was completed

	kOfxStatErrValue - invalid primitive, or point_count not valid for primitive

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

	
OfxStatus (*drawText)(OfxDrawContextHandle context, const char *text, const OfxPointD *pos, int alignment)

	Draws text at the specified position.

	context - the draw context

	text - the text to draw (UTF-8 encoded)

	pos - the position at which to align the text

	alignment - the text alignment flags (see kOfxDrawTextAlignment*)

The text font face and size are determined by the host.

	Return:

	
	kOfxStatOK - the text was drawn

	kOfxStatErrValue - text or pos were not defined

	kOfxStatFailed - failure, e.g. if function is called outside kOfxInteractActionDraw

Struct OfxHost

	
struct OfxHost

	Generic host structure passed to OfxPlugin::setHost function.

This structure contains what is needed by a plug-in to bootstrap its connection to the host.

Public Members

	
OfxPropertySetHandle host

	Global handle to the host. Extract relevant host properties from this. This pointer will be valid while the binary containing the plug-in is loaded.

	
const void *(*fetchSuite)(OfxPropertySetHandle host, const char *suiteName, int suiteVersion)

	The function which the plug-in uses to fetch suites from the host.

	host - the host the suite is being fetched from this must be the host member of the OfxHost struct containing fetchSuite.

	suiteName - ASCII string labelling the host supplied API

	suiteVersion - version of that suite to fetch

Any API fetched will be valid while the binary containing the plug-in is loaded.

Repeated calls to fetchSuite with the same parameters will return the same pointer.

returns
	NULL if the API is unknown (either the api or the version requested),

	pointer to the relevant API if it was found

Struct OfxImageEffectOpenGLRenderSuiteV1

	
struct OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

Public Members

	
OfxStatus (*clipLoadTexture)(OfxImageClipHandle clip, OfxTime time, const char *format, const OfxRectD *region, OfxPropertySetHandle *textureHandle)

	loads an image from an OFX clip as a texture into OpenGL

	clip - the clip to load the image from

	time - effect time to load the image from

	format - the requested texture format (As in none,byte,word,half,float, etc..) When set to NULL, the host decides the format based on the plug-in’s kOfxOpenGLPropPixelDepth setting.

	region - region of the image to load (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	textureHandle - a property set containing information about the texture

An image is fetched from a clip at the indicated time for the given region and loaded into an OpenGL texture. When a specific format is requested, the host ensures it gives the requested format. When the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the kOfxImageEffectActionRender action. If the region parameter is set to non-NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set or is NULL, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped to the clip’s Region of Definition. Information about the texture, including the texture index, is returned in the textureHandle argument. The properties on this handle will be…
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

With the exception of the OpenGL specifics, these properties are the same as the properties in an image handle returned by clipGetImage in the image effect suite.

Note

	this is the OpenGL equivalent of clipGetImage from OfxImageEffectSuiteV1

	Pre:

	
	clip was returned by clipGetHandle

	Format property in the texture handle

	Post:

	
	texture handle to be disposed of by clipFreeTexture before the action returns

	when the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the render action.

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - not enough OpenGL memory was available for the effect to load the texture. The plugin should abort the GL render and return kOfxStatErrMemory, after which the host can decide to retry the operation with CPU based processing.

	
OfxStatus (*clipFreeTexture)(OfxPropertySetHandle textureHandle)

	Releases the texture handle previously returned by clipLoadTexture.

For input clips, this also deletes the texture from OpenGL. This should also be called on the output clip; for the Output clip, it just releases the handle but does not delete the texture (since the host will need to read it).

	Pre:

	
	textureHandle was returned by clipGetImage

	Post:

	
	all operations on textureHandle will be invalid, and the OpenGL texture it referred to has been deleted (for source clips)

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - general failure for some reason,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*flushResources)()

	Request the host to minimize its GPU resource load.

When a plugin fails to allocate GPU resources, it can call this function to request the host to flush its GPU resources if it holds any. After the function the plugin can try again to allocate resources which then might succeed if the host actually has released anything.

	Pre:

	

	Post:

	
	No changes to the plugin GL state should have been made.

	Return:

	
	kOfxStatOK - the host has actually released some resources,

	kOfxStatReplyDefault - nothing the host could do..

Struct OfxImageEffectSuiteV1

	
struct OfxImageEffectSuiteV1

	The OFX suite for image effects.

This suite provides the functions needed by a plugin to defined and use an image effect plugin.

Public Members

	
OfxStatus (*getPropertySet)(OfxImageEffectHandle imageEffect, OfxPropertySetHandle *propHandle)

	Retrieves the property set for the given image effect.

	imageEffect image effect to get the property set for

	propHandle pointer to a the property set pointer, value is returned here

The property handle is for the duration of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*getParamSet)(OfxImageEffectHandle imageEffect, OfxParamSetHandle *paramSet)

	Retrieves the parameter set for the given image effect.

	imageEffect image effect to get the property set for

	paramSet pointer to a the parameter set, value is returned here

The param set handle is valid for the lifetime of the image effect handle.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipDefine)(OfxImageEffectHandle imageEffect, const char *name, OfxPropertySetHandle *propertySet)

	Define a clip to the effect.

	pluginHandle - the handle passed into ‘describeInContext’ action

	name - unique name of the clip to define

	propertySet - a property handle for the clip descriptor will be returned here

This function defines a clip to a host, the returned property set is used to describe various aspects of the clip to the host. Note that this does not create a clip instance.

	Pre:

	
	we are inside the describe in context action.

	Return:

	

	
OfxStatus (*clipGetHandle)(OfxImageEffectHandle imageEffect, const char *name, OfxImageClipHandle *clip, OfxPropertySetHandle *propertySet)

	Get the propery handle of the named input clip in the given instance.

	imageEffect - an instance handle to the plugin

	name - name of the clip, previously used in a clip define call

	clip - where to return the clip

	propertySet if not null, the descriptor handle for a parameter’s property set will be placed here.

The propertySet will have the same value as would be returned by OfxImageEffectSuiteV1::clipGetPropertySet This return a clip handle for the given instance, note that this will \em not be the same as the
clip handle returned by clipDefine and will be distanct to clip handles in any other instance
of the plugin.

Not a valid call in any of the describe actions.

	Pre:

	
	create instance action called,

	name passed to clipDefine for this context,

	not inside describe or describe in context actions.

	Post:

	
	handle will be valid for the life time of the instance.

	
OfxStatus (*clipGetPropertySet)(OfxImageClipHandle clip, OfxPropertySetHandle *propHandle)

	Retrieves the property set for a given clip.

	clip clip effect to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the clip, which is generally the lifetime of the instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*clipGetImage)(OfxImageClipHandle clip, OfxTime time, const OfxRectD *region, OfxPropertySetHandle *imageHandle)

	Get a handle for an image in a clip at the indicated time and indicated region.

	clip - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - property set containing the image’s data

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

If clipGetImage is called twice with the same parameters, then two separate image handles will be returned, each of which must be release. The underlying implementation could share image data pointers and use reference counting to maintain them.

	Pre:

	
	clip was returned by clipGetHandle

	Post:

	
	image handle is only valid for the duration of the action clipGetImage is called in

	image handle to be disposed of by clipReleaseImage before the action returns

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
OfxStatus (*clipReleaseImage)(OfxPropertySetHandle imageHandle)

	Releases the image handle previously returned by clipGetImage.

	Pre:

	
	imageHandle was returned by clipGetImage

	Post:

	
	all operations on imageHandle will be invalid

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*clipGetRegionOfDefinition)(OfxImageClipHandle clip, OfxTime time, OfxRectD *bounds)

	Returns the spatial region of definition of the clip at the given time.

	clipHandle - the clip to extract the image from

	time - time to fetch the image at

	region - region to fetch the image from (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	imageHandle - handle where the image is returned

An image is fetched from a clip at the indicated time for the given region and returned in the imageHandle.

If the region parameter is not set to NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped the clip’s Region of Definition.

	Pre:

	
	clipHandle was returned by clipGetHandle

	Post:

	
	bounds will be filled the RoD of the clip at the indicated time

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - the host had not enough memory to complete the operation, plugin should abort whatever it was doing.

	
int (*abort)(OfxImageEffectHandle imageEffect)

	Returns whether to abort processing or not.

	imageEffect - instance of the image effect

A host may want to signal to a plugin that it should stop whatever rendering it is doing and start again. Generally this is done in interactive threads in response to users tweaking some parameter.

This function indicates whether a plugin should stop whatever processing it is doing.

	Return:

	
	0 if the effect should continue whatever processing it is doing

	1 if the effect should abort whatever processing it is doing

	
OfxStatus (*imageMemoryAlloc)(OfxImageEffectHandle instanceHandle, size_t nBytes, OfxImageMemoryHandle *memoryHandle)

	Allocate memory from the host’s image memory pool.

	instanceHandle - effect instance to associate with this memory allocation, may be NULL.

	nBytes - the number of bytes to allocate

	memoryHandle - pointer to the memory handle where a return value is placed

Memory handles allocated by this should be freed by OfxImageEffectSuiteV1::imageMemoryFree. To access the memory behind the handle you need to call OfxImageEffectSuiteV1::imageMemoryLock.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if all went well, a valid memory handle is placed in memoryHandle

	kOfxStatErrBadHandle if instanceHandle is not valid, memoryHandle is set to NULL

	kOfxStatErrMemory if there was not enough memory to satisfy the call, memoryHandle is set to NULL

	
OfxStatus (*imageMemoryFree)(OfxImageMemoryHandle memoryHandle)

	Frees a memory handle and associated memory.

	memoryHandle - memory handle returned by imageMemoryAlloc

This function frees a memory handle and associated memory that was previously allocated via OfxImageEffectSuiteV1::imageMemoryAlloc

If there are outstanding locks, these are ignored and the handle and memory are freed anyway.

See ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was cleanly deleted

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc

	
OfxStatus (*imageMemoryLock)(OfxImageMemoryHandle memoryHandle, void **returnedPtr)

	Lock the memory associated with a memory handle and make it available for use.

	memoryHandle - memory handle returned by imageMemoryAlloc

	returnedPtr - where to the pointer to the locked memory

This function locks them memory associated with a memory handle and returns a pointer to it. The memory will be 16 byte aligned, to allow use of vector operations.

Note that memory locks and unlocks nest.

After the first lock call, the contents of the memory pointer to by returnedPtr is undefined. All subsequent calls to lock will return memory with the same contents as the previous call.

Also, if unlocked, then relocked, the memory associated with a memory handle may be at a different address.

See also OfxImageEffectSuiteV1::imageMemoryUnlock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was locked, a pointer is placed in returnedPtr

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

	kOfxStatErrMemory if there was not enough memory to satisfy the call, *returnedPtr is set to NULL

	
OfxStatus (*imageMemoryUnlock)(OfxImageMemoryHandle memoryHandle)

	Unlock allocated image data.

	allocatedData - pointer to memory previously returned by OfxImageEffectSuiteV1::imageAlloc

This function unlocks a previously locked memory handle. Once completely unlocked, memory associated with a memoryHandle is no longer available for use. Attempting to use it results in undefined behaviour.

Note that locks and unlocks nest, and to fully unlock memory you need to match the count of locks placed upon it.

Also note, if you unlock a completely unlocked handle, it has no effect (ie: the lock count can’t be negative).

If unlocked, then relocked, the memory associated with a memory handle may be at a different address, however the contents will remain the same.

See also OfxImageEffectSuiteV1::imageMemoryLock and ImageEffectsMemoryAllocation.

	Return:

	
	kOfxStatOK if the memory was unlocked cleanly,

	kOfxStatErrBadHandle if the value of memoryHandle was not a valid pointer returned by OfxImageEffectSuiteV1::imageMemoryAlloc, null is placed in *returnedPtr

Struct OfxInteractSuiteV1

	
struct OfxInteractSuiteV1

	OFX suite that allows an effect to interact with an openGL window so as to provide custom interfaces.

Public Members

	
OfxStatus (*interactSwapBuffers)(OfxInteractHandle interactInstance)

	Requests an openGL buffer swap on the interact instance.

	
OfxStatus (*interactRedraw)(OfxInteractHandle interactInstance)

	Requests a redraw of the interact instance.

	
OfxStatus (*interactGetPropertySet)(OfxInteractHandle interactInstance, OfxPropertySetHandle *property)

	Gets the property set handle for this interact handle.

Struct OfxMemorySuiteV1

	
struct OfxMemorySuiteV1

	The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

Public Members

	
OfxStatus (*memoryAlloc)(void *handle, size_t nBytes, void **allocatedData)

	Allocate memory.

	handle - effect instance to assosciate with this memory allocation, or NULL.

	nBytes - the number of bytes to allocate

	allocatedData - a pointer to the return value. Allocated memory will be alligned for any use.

This function has the host allocate memory using its own memory resources and returns that to the plugin.

	Return:

	
	kOfxStatOK the memory was sucessfully allocated

	kOfxStatErrMemory the request could not be met and no memory was allocated

	
OfxStatus (*memoryFree)(void *allocatedData)

	Frees memory.

	allocatedData - pointer to memory previously returned by OfxMemorySuiteV1::memoryAlloc

This function frees any memory that was previously allocated via OfxMemorySuiteV1::memoryAlloc.

	Return:

	
	kOfxStatOK the memory was sucessfully freed

	kOfxStatErrBadHandle allocatedData was not a valid pointer returned by OfxMemorySuiteV1::memoryAlloc

Struct OfxMessageSuiteV1

	
struct OfxMessageSuiteV1

	The OFX suite that allows a plug-in to pass messages back to a user. The V2 suite extends on this in a backwards compatible manner.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a message on the host, using printf style varargs.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

Struct OfxMessageSuiteV2

	
struct OfxMessageSuiteV2

	The OFX suite that allows a plug-in to pass messages back to a user.

This extends OfxMessageSuiteV1, and should be considered a replacement to version 1.

Note that this suite has been extended in backwards compatible manner, so that a host can return this struct for both V1 and V2.

Public Members

	
OfxStatus (*message)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a transient message on the host, using printf style varargs. Same as the V1 message suite call.

	handle - effect handle (descriptor or instance) the message should be associated with, may be null

	messageType - string describing the kind of message to post, one of the kOfxMessageType* constants

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatReplyYes - if the message was of type kOfxMessageQuestion and the user reply yes

	kOfxStatReplyNo - if the message was of type kOfxMessageQuestion and the user reply no

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*setPersistentMessage)(void *handle, const char *messageType, const char *messageId, const char *format, ...)

	Post a persistent message on an effect, using printf style varargs, and set error states. New for V2 message suite.

	handle - effect instance handle the message should be associated with, may NOT be null,

	messageType - string describing the kind of message to post, should be one of…
	kOfxMessageError

	kOfxMessageWarning

	kOfxMessageMessage

	messageId - plugin specified id to associate with this message. If overriding the message in XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur,

	format - printf style format string

	… - printf style varargs list to print

Persistent messages are associated with an effect handle until explicitly cleared by an effect. So if an error message is posted the error state, and associated message will persist and be displayed on the effect appropriately. (eg: draw a node in red on a node based compostor and display the message when clicked on).

If messageType is error or warning, associated error states should be flagged on host applications. Posting an error message implies that the host cannot proceeed, a warning allows the host to proceed, whilst a simple message should have no stop anything.

	Return:

	
	kOfxStatOK - if the message was sucessfully posted

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be posted for some reason

	
OfxStatus (*clearPersistentMessage)(void *handle)

	Clears any persistent message on an effect handle that was set by OfxMessageSuiteV2::setPersistentMessage. New for V2 message suite.

	handle - effect instance handle messages should be cleared from.

	handle - effect handle (descriptor or instance)

Clearing a message will clear any associated error state.

	Return:

	
	kOfxStatOK - if the message was sucessfully cleared

	kOfxStatErrBadHandle - the handle was rubbish

	kOfxStatFailed - if the message could not be cleared for some reason

Struct OfxMultiThreadSuiteV1

	
struct OfxMultiThreadSuiteV1

	OFX suite that provides simple SMP style multi-processing.

Public Members

	
OfxStatus (*multiThread)(OfxThreadFunctionV1 func, unsigned int nThreads, void *customArg)

	Function to spawn SMP threads.

	func The function to call in each thread.

	nThreads The number of threads to launch

	customArg The paramter to pass to customArg of func in each thread.

This function will spawn nThreads separate threads of computation (typically one per CPU) to allow something to perform symmetric multi processing. Each thread will call ‘func’ passing in the index of the thread and the number of threads actually launched.

multiThread will not return until all the spawned threads have returned. It is up to the host how it waits for all the threads to return (busy wait, blocking, whatever).

nThreads can be more than the value returned by multiThreadNumCPUs, however the threads will be limitted to the number of CPUs returned by multiThreadNumCPUs.

This function cannot be called recursively.

	Return:

	
	kOfxStatOK, the function func has executed and returned sucessfully

	kOfxStatFailed, the threading function failed to launch

	kOfxStatErrExists, failed in an attempt to call multiThread recursively,

	
OfxStatus (*multiThreadNumCPUs)(unsigned int *nCPUs)

	Function which indicates the number of CPUs available for SMP processing.

	nCPUs pointer to an integer where the result is returned

This value may be less than the actual number of CPUs on a machine, as the host may reserve other CPUs for itself.

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to get the number of CPUs

	
OfxStatus (*multiThreadIndex)(unsigned int *threadIndex)

	Function which indicates the index of the current thread.

	threadIndex pointer to an integer where the result is returned

This function returns the thread index, which is the same as the threadIndex argument passed to the OfxThreadFunctionV1.

If there are no threads currently spawned, then this function will set threadIndex to 0

	Return:

	
	kOfxStatOK, all was OK and the maximum number of threads is in nThreads.

	kOfxStatFailed, the function failed to return an index

	
int (*multiThreadIsSpawnedThread)(void)

	Function to enquire if the calling thread was spawned by multiThread.

	Return:

	
	0 if the thread is not one spawned by multiThread

	1 if the thread was spawned by multiThread

	
OfxStatus (*mutexCreate)(OfxMutexHandle *mutex, int lockCount)

	Create a mutex.

	mutex - where the new handle is returned

	count - initial lock count on the mutex. This can be negative.

Creates a new mutex with lockCount locks on the mutex intially set.

	Return:

	
	kOfxStatOK - mutex is now valid and ready to go

	
OfxStatus (*mutexDestroy)(const OfxMutexHandle mutex)

	Destroy a mutex.

Destroys a mutex intially created by mutexCreate.

	Return:

	
	kOfxStatOK - if it destroyed the mutex

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexLock)(const OfxMutexHandle mutex)

	Blocking lock on the mutex.

This trys to lock a mutex and blocks the thread it is in until the lock suceeds.

A sucessful lock causes the mutex’s lock count to be increased by one and to block any other calls to lock the mutex until it is unlocked.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatErrBadHandle - if the handle was bad

	
OfxStatus (*mutexUnLock)(const OfxMutexHandle mutex)

	Unlock the mutex.

This unlocks a mutex. Unlocking a mutex decreases its lock count by one.

	Return:

	
	kOfxStatOK if it released the lock

	kOfxStatErrBadHandle if the handle was bad

	
OfxStatus (*mutexTryLock)(const OfxMutexHandle mutex)

	Non blocking attempt to lock the mutex.

This attempts to lock a mutex, if it cannot, it returns and says so, rather than blocking.

A sucessful lock causes the mutex’s lock count to be increased by one, if the lock did not suceed, the call returns immediately and the lock count remains unchanged.

	Return:

	
	kOfxStatOK - if it got the lock

	kOfxStatFailed - if it did not get the lock

	kOfxStatErrBadHandle - if the handle was bad

Struct OfxParameterSuiteV1

	
struct OfxParameterSuiteV1

	The OFX suite used to define and manipulate user visible parameters.

Keyframe Handling

These functions allow the plug-in to delete and get information about keyframes.

To set keyframes, use paramSetValueAtTime().

paramGetKeyTime and paramGetKeyIndex use indices to refer to keyframes. Keyframes are stored by the host in increasing time order, so time(kf[i]) < time(kf[i+1]). Keyframe indices will change whenever keyframes are added, deleted, or moved in time, whether by the host or by the plug-in. They may vary between actions if the user changes a keyframe. The keyframe indices will not change within a single action.

	
OfxStatus (*paramGetNumKeys)(OfxParamHandle paramHandle, unsigned int *numberOfKeys)

	Returns the number of keyframes in the parameter.

	paramHandle parameter handle to interogate

	numberOfKeys pointer to integer where the return value is placed

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Returns the number of keyframes in the parameter.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetKeyTime)(OfxParamHandle paramHandle, unsigned int nthKey, OfxTime *time)

	Returns the time of the nth key.

	paramHandle parameter handle to interogate

	nthKey which key to ask about (0 to paramGetNumKeys -1), ordered by time

	time pointer to OfxTime where the return value is placed

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - the nthKey does not exist

	
OfxStatus (*paramGetKeyIndex)(OfxParamHandle paramHandle, OfxTime time, int direction, int *index)

	Finds the index of a keyframe at/before/after a specified time.

	paramHandle parameter handle to search

	time what time to search from

	direction
	== 0 indicates search for a key at the indicated time (some small delta)

	> 0 indicates search for the next key after the indicated time

	< 0 indicates search for the previous key before the indicated time

	index pointer to an integer which in which the index is returned set to -1 if no key was found

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatFailed - if the search failed to find a key

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramDeleteKey)(OfxParamHandle paramHandle, OfxTime time)

	Deletes a keyframe if one exists at the given time.

	paramHandle parameter handle to delete the key from

	time time at which a keyframe is

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	kOfxStatErrBadIndex - no key at the given time

	
OfxStatus (*paramDeleteAllKeys)(OfxParamHandle paramHandle)

	Deletes all keyframes from a parameter.

	paramHandle parameter handle to delete the keys from

	name parameter to delete the keyframes frome is

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

Public Members

	
OfxStatus (*paramDefine)(OfxParamSetHandle paramSet, const char *paramType, const char *name, OfxPropertySetHandle *propertySet)

	Defines a new parameter of the given type in a describe action.

	paramSet handle to the parameter set descriptor that will hold this parameter

	paramType type of the parameter to create, one of the kOfxParamType* #defines

	name unique name of the parameter

	propertySet if not null, a pointer to the parameter descriptor’s property set will be placed here.

This function defines a parameter in a parameter set and returns a property set which is used to describe that parameter.

This function does not actually create a parameter, it only says that one should exist in any subsequent instances. To fetch an parameter instance paramGetHandle must be called on an instance.

This function can always be called in one of a plug-in’s “describe” functions which defines the parameter sets common to all instances of a plugin.

	Return:

	
	kOfxStatOK - the parameter was created correctly

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrExists - if a parameter of that name exists already in this plugin

	kOfxStatErrUnknown - if the type is unknown

	kOfxStatErrUnsupported - if the type is known but unsupported

	
OfxStatus (*paramGetHandle)(OfxParamSetHandle paramSet, const char *name, OfxParamHandle *param, OfxPropertySetHandle *propertySet)

	Retrieves the handle for a parameter in a given parameter set.

	paramSet instance of the plug-in to fetch the property handle from

	name parameter to ask about

	param pointer to a param handle, the value is returned here

	propertySet if not null, a pointer to the parameter’s property set will be placed here.

Parameter handles retrieved from an instance are always distinct in each instance. The paramter handle is valid for the life-time of the instance. Parameter handles in instances are distinct from paramter handles in plugins. You cannot call this in a plugin’s describe function, as it needs an instance to work on.

	Return:

	
	kOfxStatOK - the parameter was found and returned

	kOfxStatErrBadHandle - if the plugin handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramSetGetPropertySet)(OfxParamSetHandle paramSet, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter set.

	paramSet parameter set to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

Note

The property handle belonging to a parameter set is the same as the property handle belonging to the plugin instance.

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetPropertySet)(OfxParamHandle param, OfxPropertySetHandle *propHandle)

	Retrieves the property set handle for the given parameter.

	param parameter to get the property set for

	propHandle pointer to a the property set handle, value is returedn her

The property handle is valid for the lifetime of the parameter, which is the lifetime of the instance that owns the parameter

	Return:

	
	kOfxStatOK - the property set was found and returned

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*paramGetValue)(OfxParamHandle paramHandle, ...)

	Gets the current value of a parameter,.

	paramHandle parameter handle to fetch value from

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs … argument needs to be pointer to C variables of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example…

 OfxParamHandle myDoubleParam, *myColourParam;
 ofxHost->paramGetHandle(instance, "myDoubleParam", &myDoubleParam);
 double myDoubleValue;
 ofxHost->paramGetValue(myDoubleParam, &myDoubleValue);
 ofxHost->paramGetHandle(instance, "myColourParam", &myColourParam);
 double myR, myG, myB;
 ofxHost->paramGetValue(myColourParam, &myR, &myG, &myB);

Note

paramGetValue should only be called from within a kOfxActionInstanceChanged or interact action and never from the render actions (which should always use paramGetValueAtTime).

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the value of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s value

This gets the current value of a parameter. The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetDerivative)(OfxParamHandle paramHandle, OfxTime time, ...)

	Gets the derivative of a parameter at a specific time.

	paramHandle parameter handle to fetch value from

	time at what point in time to look up the parameter

	… one or more pointers to variables of the relevant type to hold the parameter’s derivative

This gets the derivative of the parameter at the indicated time.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can have their derivatives found.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramGetIntegral)(OfxParamHandle paramHandle, OfxTime time1, OfxTime time2, ...)

	Gets the integral of a parameter over a specific time range,.

	paramHandle parameter handle to fetch integral from

	time1 where to start evaluating the integral

	time2 where to stop evaluating the integral

	… one or more pointers to variables of the relevant type to hold the parameter’s integral

This gets the integral of the parameter over the specified time range.

The varargs needs to be pointer to C variables of the relevant type for this parameter. See OfxParameterSuiteV1::paramGetValue for notes on the varags list.

Only double and colour params can be integrated.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValue)(OfxParamHandle paramHandle, ...)

	Sets the current value of a parameter.

	paramHandle parameter handle to set value in

	… one or more variables of the relevant type to hold the parameter’s value

This sets the current value of a parameter. The varargs … argument needs to be values of the relevant type for this parameter. Note that params with multiple values (eg Colour) take multiple args here. For example… ofxHost->paramSetValue(instance, "myDoubleParam", double(10));
 ofxHost->paramSetValue(instance, "myColourParam", double(pix.r), double(pix.g), double(pix.b));

Note

paramSetValue should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramSetValueAtTime)(OfxParamHandle paramHandle, OfxTime time, ...)

	Keyframes the value of a parameter at a specific time.

	paramHandle parameter handle to set value in

	time at what point in time to set the keyframe

	… one or more variables of the relevant type to hold the parameter’s value

This sets a keyframe in the parameter at the indicated time to have the indicated value. The varargs … argument needs to be values of the relevant type for this parameter. See the note on OfxParameterSuiteV1::paramSetValue for more detail

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

Note

paramSetValueAtTime should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramCopy)(OfxParamHandle paramTo, OfxParamHandle paramFrom, OfxTime dstOffset, const OfxRangeD *frameRange)

	Copies one parameter to another, including any animation etc…

	paramTo parameter to set

	paramFrom parameter to copy from

	dstOffset temporal offset to apply to keys when writing to the paramTo

	frameRange if paramFrom has animation, and frameRange is not null, only this range of keys will be copied

This copies the value of paramFrom to paramTo, including any animation it may have. All the previous values in paramTo will be lost.

To choose all animation in paramFrom set frameRange to [0, 0]

V1.3: This function can be called the kOfxActionInstanceChanged action and during image effect analysis render passes. V1.4: This function can be called the kOfxActionInstanceChanged action

	Pre:

	
	Both parameters must be of the same type.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the parameter handle was invalid

	
OfxStatus (*paramEditBegin)(OfxParamSetHandle paramSet, const char *name)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

	name label to attach to any undo/redo string UTF8

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the start of a set of a parameter changes that should be considered part of a single undo/redo block.

See also OfxParameterSuiteV1::paramEditEnd

Note

paramEditBegin should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

	
OfxStatus (*paramEditEnd)(OfxParamSetHandle paramSet)

	Used to group any parameter changes for undo/redo purposes.

	paramSet the parameter set in which this is happening

If a plugin calls paramSetValue/paramSetValueAtTime on one or more parameters, either from custom GUI interaction or some analysis of imagery etc.. this is used to indicate the end of a set of parameter changes that should be considerred part of a single undo/redo block

See also OfxParameterSuiteV1::paramEditBegin

Note

paramEditEnd should only be called from within a kOfxActionInstanceChanged or interact action.

	Return:

	
	kOfxStatOK - all was OK

	kOfxStatErrBadHandle - if the instance handle was invalid

Struct OfxParametricParameterSuiteV1

	
struct OfxParametricParameterSuiteV1

	The OFX suite used to define and manipulate ‘parametric’ parameters.

This is an optional suite.

Parametric parameters are in effect ‘functions’ a plug-in can ask a host to arbitrarily evaluate for some value ‘x’. A classic use case would be for constructing look-up tables, a plug-in would ask the host to evaluate one at multiple values from 0 to 1 and use that to fill an array.

A host would probably represent this to a user as a cubic curve in a standard curve editor interface, or possibly through scripting. The user would then use this to define the ‘shape’ of the parameter.

The evaluation of such params is not the same as animation, they are returning values based on some arbitrary argument orthogonal to time, so to evaluate such a param, you need to pass a parametric position and time.

Often, you would want such a parametric parameter to be multi-dimensional, for example, a colour look-up table might want three values, one for red, green and blue. Rather than declare three separate parametric parameters, it would be better to have one such parameter with multiple values in it.

The major complication with these parameters is how to allow a plug-in to set values, and defaults. The default default value of a parametric curve is to be an identity lookup. If a plugin wishes to set a different default value for a curve, it can use the suite to set key/value pairs on the descriptor of the param. When a new instance is made, it will have these curve values as a default.

Public Members

	
OfxStatus (*parametricParamGetValue)(OfxParamHandle param, int curveIndex, OfxTime time, double parametricPosition, double *returnValue)

	Evaluates a parametric parameter.

	param handle to the parametric parameter

	curveIndex which dimension to evaluate

	time the time to evaluate to the parametric param at

	parametricPosition the position to evaluate the parametric param at

	returnValue pointer to a double where a value is returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNControlPoints)(OfxParamHandle param, int curveIndex, double time, int *returnValue)

	Returns the number of control points in the parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	returnValue pointer to an integer where the value is returned.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrBadIndex - the curve index was invalid

	
OfxStatus (*parametricParamGetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double *key, double *value)

	Returns the key/value pair of the nth control point.

	param handle to the parametric parameter

	curveIndex which dimension to check

	time the time to check

	nthCtl the nth control point to get the value of

	key pointer to a double where the key will be returned

	value pointer to a double where the value will be returned

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamSetNthControlPoint)(OfxParamHandle param, int curveIndex, double time, int nthCtl, double key, double value, bool addAnimationKey)

	Modifies an existing control point on a curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	nthCtl the control point to modify

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This modifies an existing control point. Note that by changing key, the order of the control point may be modified (as you may move it before or after anther point). So be careful when iterating over a curves control points and you change a key.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamAddControlPoint)(OfxParamHandle param, int curveIndex, double time, double key, double value, bool addAnimationKey)

	Adds a control point to the curve.

	param handle to the parametric parameter

	curveIndex which dimension to set

	time the time to set the value at

	key key of the control point

	value value of the control point

	addAnimationKey if the param is an animatable, setting this to true will force an animation keyframe to be set as well as a curve key, otherwise if false, a key will only be added if the curve is already animating.

This will add a new control point to the given dimension of a parametric parameter. If a key exists sufficiently close to ‘key’, then it will be set to the indicated control point.

	Return:

	
	kOfxStatOK - all was fine

	kOfxStatErrBadHandle - if the paramter handle was invalid

	kOfxStatErrUnknown - if the type is unknown

	
OfxStatus (*parametricParamDeleteControlPoint)(OfxParamHandle param, int curveIndex, int nthCtl)

	Deletes the nth control point from a parametric param.

	param handle to the parametric parameter

	curveIndex which dimension to delete

	nthCtl the control point to delete

	
OfxStatus (*parametricParamDeleteAllControlPoints)(OfxParamHandle param, int curveIndex)

	Delete all curve control points on the given param.

	param handle to the parametric parameter

	curveIndex which dimension to clear

Struct OfxPlugin

	
struct OfxPlugin

	The structure that defines a plug-in to a host.

This structure is the first element in any plug-in structure using the OFX plug-in architecture. By examining its members a host can determine the API that the plug-in implements, the version of that API, its name and version.

For details see Architecture.

Public Members

	
const char *pluginApi

	Defines the type of the plug-in, this will tell the host what the plug-in does. e.g.: an image effects plug-in would be a “OfxImageEffectPlugin”

	
int apiVersion

	Defines the version of the pluginApi that this plug-in implements

	
const char *pluginIdentifier

	String that uniquely labels the plug-in among all plug-ins that implement an API. It need not necessarily be human sensible, however the preference is to use reverse internet domain name of the developer, followed by a ‘.’ then by a name that represents the plug-in.. It must be a legal ASCII string and have no whitespace in the name and no non printing chars. For example “uk.co.somesoftwarehouse.myPlugin”

	
unsigned int pluginVersionMajor

	Major version of this plug-in, this gets incremented when backwards compatibility is broken.

	
unsigned int pluginVersionMinor

	Major version of this plug-in, this gets incremented when software is changed, but does not break backwards compatibility.

	
void (*setHost)(OfxHost *host)

	Function the host uses to connect the plug-in to the host’s api fetcher.

	fetchApi - pointer to host’s API fetcher

Mandatory function.

The very first function called in a plug-in. The plug-in must not call any OFX functions within this, it must only set its local copy of the host pointer.

	Pre:

	
	nothing else has been called

	Post:

	
	the pointer suite is valid until the plug-in is unloaded

	
OfxPluginEntryPoint *mainEntry

	Main entry point for plug-ins.

Mandatory function.

The exact set of actions is determined by the plug-in API that is being implemented, however all plug-ins can perform several actions. For the list of actions consult OFX Actions.

Preconditions
	setHost has been called

Struct OfxPointD

	
struct OfxPointD

	Defines two dimensional double point.

Public Members

	
double x

	

	
double y

	

Struct OfxPointI

	
struct OfxPointI

	Defines two dimensional integer point.

Public Members

	
int x

	

	
int y

	

Struct OfxProgressSuiteV1

	
struct OfxProgressSuiteV1

	A suite that provides progress feedback from a plugin to an application.

A plugin instance can initiate, update and close a progress indicator with this suite.

This is an optional suite in the Image Effect API.

API V1.4: Amends the documentation of progress suite V1 so that it is expected that it can be raised in a modal manner and have a “cancel” button when invoked in instanceChanged. Plugins that perform analysis post an appropriate message, raise the progress monitor in a modal manner and should poll to see if processing has been aborted. Any cancellation should be handled gracefully by the plugin (eg: reset analysis parameters to default values), clear allocated memory…

Many hosts already operate as described above. kOfxStatReplyNo should be returned to the plugin during progressUpdate when the user presses cancel.

Suite V2: Adds an ID that can be looked up for internationalisation and so on. When a new version is introduced, because plug-ins need to support old versions, and plug-in’s new releases are not necessary in synch with hosts (or users don’t immediately update), best practice is to support the 2 suite versions. That is, the plugin should check if V2 exists; if not then check if V1 exists. This way a graceful transition is guaranteed. So plugin should fetchSuite passing 2, (OfxProgressSuiteV2*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,2); and if no success pass (OfxProgressSuiteV1*) fetchSuite(mHost->mHost->host, kOfxProgressSuite,1);

Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *label)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	label - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

Struct OfxProgressSuiteV2

	
struct OfxProgressSuiteV2

	
Public Members

	
OfxStatus (*progressStart)(void *effectInstance, const char *message, const char *messageid)

	Initiate a progress bar display.

Call this to initiate the display of a progress bar.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	message - a text label to display in any message portion of the progress object’s user interface. A UTF8 string.

	messageId - plugin-specified id to associate with this message. If overriding the message in an XML resource, the message is identified with this, this may be NULL, or “”, in which case no override will occur. New in V2 of this suite.

	Pre:

	- There is no currently ongoing progress display for this instance.

	Return:

	
	kOfxStatOK - the handle is now valid for use

	kOfxStatFailed - the progress object failed for some reason

	kOfxStatErrBadHandle - effectInstance was invalid

	
OfxStatus (*progressUpdate)(void *effectInstance, double progress)

	Indicate how much of the processing task has been completed and reports on any abort status.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	progress - a number between 0.0 and 1.0 indicating what proportion of the current task has been processed.

	Return:

	
	kOfxStatOK - the progress object was successfully updated and the task should continue

	kOfxStatReplyNo - the progress object was successfully updated and the task should abort

	kOfxStatErrBadHandle - the progress handle was invalid,

	
OfxStatus (*progressEnd)(void *effectInstance)

	Signal that we are finished with the progress meter.

Call this when you are done with the progress meter and no longer need it displayed.

	effectInstance - the instance of the plugin this progress bar is associated with. It cannot be NULL.

	Post:

	- you can no longer call progressUpdate on the instance

	Return:

	
	kOfxStatOK - the progress object was successfully closed

	kOfxStatErrBadHandle - the progress handle was invalid,

Struct OfxPropertySuiteV1

	
struct OfxPropertySuiteV1

	The OFX suite used to access properties on OFX objects.

Public Members

	
OfxStatus (*propSetPointer)(OfxPropertySetHandle properties, const char *property, int index, void *value)

	Set a single value in a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetString)(OfxPropertySetHandle properties, const char *property, int index, const char *value)

	Set a single value in a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDouble)(OfxPropertySetHandle properties, const char *property, int index, double value)

	Set a single value in a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetInt)(OfxPropertySetHandle properties, const char *property, int index, int value)

	Set a single value in an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index is for multidimenstional properties and is dimension of the one we are setting

	value is the value of the property we are setting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void *const *value)

	Set multiple values of the pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetStringN)(OfxPropertySetHandle properties, const char *property, int count, const char *const *value)

	Set multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, const double *value)

	Set multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propSetIntN)(OfxPropertySetHandle properties, const char *property, int count, const int *value)

	Set multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are setting in that property (ie: indicies 0..count-1)

	value is a pointer to an array of property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	kOfxStatErrValue

	
OfxStatus (*propGetPointer)(OfxPropertySetHandle properties, const char *property, int index, void **value)

	Get a single value from a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetString)(OfxPropertySetHandle properties, const char *property, int index, char **value)

	Get a single value of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDouble)(OfxPropertySetHandle properties, const char *property, int index, double *value)

	Get a single value of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetInt)(OfxPropertySetHandle properties, const char *property, int index, int *value)

	Get a single value of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	index refers to the index of a multi-dimensional property

	value is a pointer the return location

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetPointerN)(OfxPropertySetHandle properties, const char *property, int count, void **value)

	Get multiple values of a pointer property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetStringN)(OfxPropertySetHandle properties, const char *property, int count, char **value)

	Get multiple values of a string property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

See the note ArchitectureStrings for how to deal with strings.

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetDoubleN)(OfxPropertySetHandle properties, const char *property, int count, double *value)

	Get multiple values of a double property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propGetIntN)(OfxPropertySetHandle properties, const char *property, int count, int *value)

	Get multiple values of an int property.

	properties is the handle of the thing holding the property

	property is the string labelling the property

	count is the number of values we are getting of that property (ie: indicies 0..count-1)

	value is a pointer to an array of where we will return the property values

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	kOfxStatErrBadIndex

	
OfxStatus (*propReset)(OfxPropertySetHandle properties, const char *property)

	Resets all dimensions of a property to its default value.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

	
OfxStatus (*propGetDimension)(OfxPropertySetHandle properties, const char *property, int *count)

	Gets the dimension of the property.

	properties is the handle of the thing holding the property

	property is the string labelling the property we are resetting

	count is a pointer to an integer where the value is returned

	Return:

	
	kOfxStatOK

	kOfxStatErrBadHandle

	kOfxStatErrUnknown

Struct OfxRGBAColourB

	
struct OfxRGBAColourB

	Defines an 8 bit per component RGBA pixel.

Public Members

	
unsigned char r

	

	
unsigned char g

	

	
unsigned char b

	

	
unsigned char a

	

Struct OfxRGBAColourD

	
struct OfxRGBAColourD

	Defines a double precision floating point component RGBA pixel.

Public Members

	
double r

	

	
double g

	

	
double b

	

	
double a

	

Struct OfxRGBAColourF

	
struct OfxRGBAColourF

	Defines a floating point component RGBA pixel.

Public Members

	
float r

	

	
float g

	

	
float b

	

	
float a

	

Struct OfxRGBAColourS

	
struct OfxRGBAColourS

	Defines a 16 bit per component RGBA pixel.

Public Members

	
unsigned short r

	

	
unsigned short g

	

	
unsigned short b

	

	
unsigned short a

	

Struct OfxRGBColourB

	
struct OfxRGBColourB

	Defines an 8 bit per component RGB pixel.

Public Members

	
unsigned char r

	

	
unsigned char g

	

	
unsigned char b

	

Struct OfxRGBColourD

	
struct OfxRGBColourD

	Defines a double precision floating point component RGB pixel.

Public Members

	
double r

	

	
double g

	

	
double b

	

Struct OfxRGBColourF

	
struct OfxRGBColourF

	Defines a floating point component RGB pixel.

Public Members

	
float r

	

	
float g

	

	
float b

	

Struct OfxRGBColourS

	
struct OfxRGBColourS

	Defines a 16 bit per component RGB pixel.

Public Members

	
unsigned short r

	

	
unsigned short g

	

	
unsigned short b

	

Struct OfxRangeD

	
struct OfxRangeD

	Defines one dimensional double bounds.

Public Members

	
double min

	

	
double max

	

Struct OfxRangeI

	
struct OfxRangeI

	Defines one dimensional integer bounds.

Public Members

	
int min

	

	
int max

	

Struct OfxRectD

	
struct OfxRectD

	Defines two dimensional double region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
double x1

	

	
double y1

	

	
double x2

	

	
double y2

	

Struct OfxRectI

	
struct OfxRectI

	Defines two dimensional integer region.

Regions are x1 <= x < x2

Infinite regions are flagged by setting
	x1 = kOfxFlagInfiniteMin

	y1 = kOfxFlagInfiniteMin

	x2 = kOfxFlagInfiniteMax

	y2 = kOfxFlagInfiniteMax

Public Members

	
int x1

	

	
int y1

	

	
int x2

	

	
int y2

	

Struct OfxTimeLineSuiteV1

	
struct OfxTimeLineSuiteV1

	Suite to control timelines.

This suite is used to enquire and control a timeline associated with a plug-in instance.

This is an optional suite in the Image Effect API.

Public Members

	
OfxStatus (*getTime)(void *instance, double *time)

	Get the time value of the timeline that is controlling to the indicated effect.

	instance - is the instance of the effect changing the timeline, cast to a void *

	time - a pointer through which the timeline value should be returned

This function returns the current time value of the timeline associated with the effect instance.

	Return:

	
	kOfxStatOK - the time enquiry was sucessful

	kOfxStatFailed - the enquiry failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	
OfxStatus (*gotoTime)(void *instance, double time)

	Move the timeline control to the indicated time.

	instance - is the instance of the effect changing the timeline, cast to a void *

	time - is the time to change the timeline to. This is in the temporal coordinate system of the effect.

This function moves the timeline to the indicated frame and returns. Any side effects of the timeline change are also triggered and completed before this returns (for example instance changed actions and renders if the output of the effect is being viewed).

	Return:

	
	kOfxStatOK - the time was changed sucessfully, will all side effects if the change completed

	kOfxStatFailed - the change failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

	kOfxStatErrValue - the time was an illegal value

	
OfxStatus (*getTimeBounds)(void *instance, double *firstTime, double *lastTime)

	Get the current bounds on a timeline.

	instance - is the instance of the effect changing the timeline, cast to a void *

	firstTime - is the first time on the timeline. This is in the temporal coordinate system of the effect.

	lastTime - is last time on the timeline. This is in the temporal coordinate system of the effect.

This function

	Return:

	
	kOfxStatOK - the time enquiry was sucessful

	kOfxStatFailed - the enquiry failed for some host specific reason

	kOfxStatErrBadHandle - the effect handle was invalid

Struct OfxYUVAColourB

	
struct OfxYUVAColourB

	Defines an 8 bit per component YUVA pixel — ofxPixels.h Deprecated in 1.3, removed in 1.4.

Public Members

	
unsigned char y

	

	
unsigned char u

	

	
unsigned char v

	

	
unsigned char a

	

Struct OfxYUVAColourF

	
struct OfxYUVAColourF

	Defines an floating point component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

Public Members

	
float y

	

	
float u

	

	
float v

	

	
float a

	

Struct OfxYUVAColourS

	
struct OfxYUVAColourS

	Defines an 16 bit per component YUVA pixel — ofxPixels.h.

	
Deprecated:

	
	Deprecated in 1.3, removed in 1.4

Public Members

	
unsigned short y

	

	
unsigned short u

	

	
unsigned short v

	

	
unsigned short a

	

Status Codes

Status codes are returned by most functions in OFX suites and all
plug-in actions to indicate the success or failure of the operation. All
status codes are defined in ofxCore.h [https://github.com/ofxa/openfx/blob/master/include/ofxCore.h] and
#defined to be integers.

	
typedef int OfxStatus

	OFX status return type.

Most OFX functions in host suites and all actions in a plug-in return a
status code, where the status codes are all 32 bit integers. This
typedef is used to label that status code.

	
kOfxStatOK

	Status code indicating all was fine.

	
kOfxStatFailed

	Status error code for a failed operation.

	
kOfxStatErrFatal

	Status error code for a fatal error.

Only returned in the case where the plug-in or host cannot continue to function and needs to be restarted.

	
kOfxStatErrUnknown

	Status error code for an operation on or request for an unknown object.

	
kOfxStatErrMissingHostFeature

	Status error code returned by plug-ins when they are missing host functionality, either an API or some optional functionality (eg: custom params).

Plug-Ins returning this should post an appropriate error message stating what they are missing.

	
kOfxStatErrUnsupported

	Status error code for an unsupported feature/operation.

	
kOfxStatErrExists

	Status error code for an operation attempting to create something that exists.

	
kOfxStatErrFormat

	Status error code for an incorrect format.

	
kOfxStatErrMemory

	Status error code indicating that something failed due to memory shortage.

	
kOfxStatErrBadHandle

	Status error code for an operation on a bad handle.

	
kOfxStatErrBadIndex

	Status error code indicating that a given index was invalid or unavailable.

	
kOfxStatErrValue

	Status error code indicating that something failed due an illegal value.

	
kOfxStatReplyYes

	OfxStatus returned indicating a ‘yes’.

	
kOfxStatReplyNo

	OfxStatus returned indicating a ‘no’.

	
kOfxStatReplyDefault

	OfxStatus returned indicating that a default action should be performed.

Status codes for GPU renders:

These are defined in ofxGPURender.h.

	
kOfxStatGPUOutOfMemory

	GPU render ran out of memory.

	
kOfxStatGLOutOfMemory

	OpenGL render ran out of memory (same as kOfxStatGPUOutOfMemory)

	
kOfxStatGPURenderFailed

	GPU render failed in a non-memory-related way.

	
kOfxStatGLRenderFailed

	OpenGL render failed in a non-memory-related way (same as kOfxStatGPURenderFailed)

Changes to the API for 1.2

Introduction

This chapter lists the changes and extensions between the 1.1 version of
the API and the 1.2 version of the API. The extension are backwards
compatible, so that a 1.2 plugin will run on an earlier version of a
host, provided a bit of care is taken. A 1.2 host will easily support a
plugin written to an earlier API.

Packaging

A new architecture directory was added to the bundle hierarchy to
specifically contain Mac OSX 64 bit builds. The current ‘MacOS’
architecture is a fall back for 32 bit only and/or universal binary
builds.

Versioning

Three new properties are provided to identify and version a plugin
and/or host. These are…

	kOfxPropAPIVersion a multi-dimensional integer that specifies the version of the API
being implemented by a host.

	kOfxPropVersion a multi-dimensional integer that provides a version number for host
and plugin

	kOfxPropVersionLabel a user readable version label

Before 1.2 there was no way to identify the version of a host
application, which a plugin could use to work around known bugs and
problems in known versions. kOfxPropVersion
provides a way to do that.

Plugin Description

The new property kOfxPropPluginDescription
allows a plugin to set a string which provides a description to a user.

Parameter Groups and Icons

Group parameters are typically displayed in a hierarchical manner on
many applications, with ‘twirlies’ to open and close the group. The new
property kOfxParamPropGroupOpen is used to
specify if a group parameter should be initially open or closed.

Some applications are able to display icons instead of text when
labelling parameters. The new property,
kOfxPropIcon, specifies an SVG file and/or a PNG
file to use as an icon in such host applications.

New Message Suite

A new message suite has been specified,
OfxMessageSuiteV2, this adds two new functions.
One to set a persistent message on an effect, and a second to clear that
message. This would typically be used to flag an error on an effects.

New Syncing Property

A new property has been added to parameter sets,
kOfxPropParamSetNeedsSyncing. This
is used by plugins with internal data structures that need syncing back
to parameters for persistence and so on. This property should be set
whenever the plugin changes it’s internal state to inform the host that
a sync will be required before the next serialisation of the plugin.
Without this property, the host would have to continually force the
plugin to sync it’s private data, whether that was a redundant operation
or not. For large data sets, this can be a significant overhead.

Sequential Rendering

Flagging sequential rendering has been slightly modified. The
kOfxImageEffectInstancePropSequentialRender
property has had a third allowed state added, which indicate that a
plugin would prefer to be sequentially rendered if possible, but need
not be.

The kOfxImageEffectInstancePropSequentialRender
property has also been added to the host descriptor, to indicate whether
the host can support sequential rendering.

The new property kOfxImageEffectPropSequentialRenderStatus
is now passed to the render actions to indicate that a host is currently
sequentially rendering or not.

Interactive Render Notification

A new property has been added to flag a render as being in response to
an interactive change by a user, as opposed to a batch render. This is
kOfxImageEffectPropInteractiveRenderStatus

Host Operating System Handle

A new property has been added to allow a plugin to request the host
operating system specific application handle (ie: on Windows (tm) this
would be the application’s root hWnd). This is
kOfxPropHostOSHandle

Non Normalised Spatial Parameters

Normalised double parameters have proved to be more of a problem than
expected. The major idea was to provide resolution independence for
spatial parameters. However, in practice, having to specify parameters
as a fraction of a yet to be determined resolution is problematic. For
example, if you want to set something to be explicitly ‘20’, there is no
way of doing that. The main problem stems from normalised params
conflating two separate issues, flagging to the host that a parameter
was spatial, and being able to specify defaults in a normalised
co-ordinate system.

With 1.2 new spatial double
parameter types are defined.
These have their values manipulated in canonical coordinates, however,
they have an option to specify their default values in a normalise
coordinate system. These are….

These new double parameter types are….

	kOfxParamDoubleTypeX
- a size in the X dimension dimension (1D only), new for 1.2

	kOfxParamDoubleTypeXAbsolute
- a position in the X dimension (1D only), new for 1.2

	kOfxParamDoubleTypeY
- a size in the Y dimension dimension (1D only), new for 1.2

	kOfxParamDoubleTypeYAbsolute
- a position in the X dimension (1D only), new for 1.2

	kOfxParamDoubleTypeXY
- a size in the X and Y dimension (2D only), new for 1.2

	kOfxParamDoubleTypeXYAbsolute
- a position in the X and Y dimension (2D only), new for 1.2

These new parameter types can set their defaults in one of two
coordinate systems, the property
kOfxParamPropDefaultCoordinateSystem
Specifies the coordinate system the default value is being specified in.

Plugins can check kOfxPropAPIVersion to see if
these new parameter types are supported

Native Overlay Handles

Some applications have their own overlay handles for certain types of
parameter (eg: spatial positions). It is often better to rely on those,
than have a plugin implement their own overlay handles. Two new
parameter, properties are available to do that, one used by the host to
indicate if such handles are available. The other by a plugin telling
the host to use such handle.

	kOfxParamPropHasHostOverlayHandle
indicates a parameter has an host native overlay handle

	kOfxParamPropUseHostOverlayHandle
indicates that a host should use a native overlay handle.

Interact Colour Hint

Some applications allow the user to specify colours of any overlay via a
colour picker. Plug-ins can access this via the
kOfxInteractPropSuggestedColour
property.

Interact Viewport Pen Position

The new property
kOfxInteractPropPenViewportPosition
is used to pass a pen position in viewport coordinate, rather than a
connaonical. This is sometimes much more convenient. It is passed to all
actions that
kOfxInteractPropPenPosition is passed to.

Parametric Parameters

A new optional parameter type, and supporting suite, is introduced,
parametric parameters.
This allows for the construction of user defined lookup tables and so
on.

OpenFX Programming Guide

This is a mostly complete reference guide to the OFX image effect plugin
architecture. It is a backwards compatible update to the 1.2 version of
the API. The changes to the API are listed in an addendum.

	Foreword

	Intended Audience

	What is OFX?

	The Examples

	Wrapping the API

	License

This directory tree contains a set of plugins and corresponding
guides which take you through the basics of the OFX
Image Effects Plugin API.

There are two sub-directories...
 - Code - which contains the example plugins source files,
 - Doc - has a guide to each plugin.

++
BUILDING THE PLUGINS

For Windows instructions, see below.

To build the example plugins you will need,
 - a C++ compiler
 - gmake (or nmake on Windows)
 - the ofx header files.

Within Code there is a subdirectory per plugin.

The assumption is that you have checked out all the OFX
source code in one lump and so the
OFX header files will be in a standard relative path to
the plugin sources. If this is not the case you will
need to modify the file...

 Code/MakefileCommon

and change the line

 OFX_INC_DIR = -I../../../include

to point to the directory where you have put the headers.

To build all the examples simply go...

 cd Code
 make

this will compile all the plugins and place them in
a directory called 'built_plugins'.

You can build individual plugins by changing into the
relevant subdirectory and simply issuing a 'make' command.

++
BUILDING ON WINDOWS

NMakefiles are included for use with Windows' nmake utility.
This should build on any Visual Studio version (at least 2008 or newer).

Open a Visual Studio command-line window of the appropriate bitness
that you want (32 for a 32-bit OFX host, 64 for a 64-bit host). From
the Start menu, go to Microsoft Visual Studio XXXX -> Visual Studio
Tools -> Visual Studio XXX Command Prompt (choose the appropriate
bitness here).

In that window, cd to the openfx/Guide/Code dir, and type:

 nmake /F nmakefile install

This will build and install the plugins into the standard OFX plugins
dir (c:\Program Files\Common Files\OFX\Plugins).

To clean up:

 nmake /F nmakefile clean

++
BUILDING THE DOCUMENTATION

To build the documentation you will need...
 - gmake
 - asciidoctor

The documentation is written in asciidoctor markdown, which can be used to
generate HTML, docbook XML and more. You will need to download and install
asciidoctor to build the doc. Visit...

 http://asciidoctor.org/

for installation instructions.

There is a gnu Makefile currently configured to generate html files. To build
the documentation simply go...

 cd Doc
 make

this will generate a subdirectory called 'html' which will contain the
guides in html format.

Last Edit 11/11/14

This is a brief description of examples which could
do with being added to the Guides.

The following examples should be added to the guide.

OpenGL Overlay Example
======================
A trivial example along the lines of the circle drawing example.

This will illustrate...
 - openGL overlays

Temporal Difference Example
===========================
Compute the absolute difference between images at two different times.

This will illustrate...
 - fetching images at separate times
 - the get frames needed action

Transition Example
===========================
A simple straight frame blend transition

This will illustrate...
 - the transition context

Custom Parameter
================
Something like the circle drawing plugin so that it has no double parameters, but only a single custom parameter, controlled via the overlay UI.

This will illustrate...
 - using custom parameters.

3x3 2D Filter
=============
Does a variety of simple 2D filtering operations using a 3x3 window.

This will illustrate...
 - the get region of interest action

Analysis Plugin
===============
The plugin will find the minimum and maximum value of a given frame in response to a push button, and store the values
into two parameters. During renders it will rescale pixel values so that 'min' is 0 and 'max' is the whitepoint.

This will illustrate...
 - writing to parameters in response to a button press outside of render.

Basic OpenGL Example
==============
Behaviour to be determined.

This will illustrate the basics of rendering in OpenGL

Last Edit 11/11/14

Foreword

OFX is an open API for writing visual effects plug-ins for a wide
variety of applications, such as video editing systems and compositing
systems. This guide demonstrates by example the low level C APIs that
defines OFX.

Intended Audience

Do you write visual effects or image processing software? Do you have an
application which deals with moving images and hosts plug-ins or would
like to host plug-ins? Then OFX is for you.

This guide assumes you can program in the C language and are
familiar with the concepts involved in writing visual effects software.
You need to understand concepts like pixels, clips, pixel aspect ratios
and so on. If you don’t, I suggest you read further or attempt to
soldier on bravely and see how far you go before you get lost.

What is OFX?

OFX is actually several things. At the lowest level OFX is a generic
C based plug-in architecture that can be used to define any kind of
plug-in API. You could use this low level architecture to implement any
API, however it was originally designed to host our visual effects image
processing API. The basic architecture could be re-used to create other
higher level APIs such as a sound effects API, a 3D API and more.

This guide describes the basic OFX plug-in architecture and the visual
effects plug-in API built on top of it. The visual effects API is very
broad and intended to allow visual effects plug-ins to work on a wide
range of host applications, including compositing hosts, rotoscopers,
encoding applications, colour grading hosts, editing hosts and more I
haven’t thought of yet. While all these type of applications process
images, they often have very different work flows and present effects to
a user in incompatible ways. OFX is an attempt to deal with all of these
in a clear and consistent manner.

The API is by design feature rich, not all aspects of the API map to all
hosts. This is to allow different host developers to implement OFX
support in a manner that best fits their applications’ capabilities.

Hosts are encouraged to extend OFX by providing extra proprietary
suites, actions, properties and settings to extend the capabilities of
the API. It would be nice that a broadly useful proprietary extension be
put forward for incorporation into the open standard.

That said although there is no validation process in terms of what is an
OFX host, a small minimal set of expectations is assumed, which we will
cover in the following guides.

The Examples

I’ll illustrate the API and how it works with a variety of example
plugins, each of which will have it’s own guide describing what is going
one. You should work through them one by one as each will build on the
one before.

For completeness and clarity of explanation, each plugin is entirely
self contained and has no dependency on anything other than standard C
and C++ libraries and the OFX headers.

	The basic machinery of an OFX plugin.

	How to access images.

	How to define parameters.

	How to write multi context effects.

	Coordinate systems and defining regions of
definition.

Wrapping the API

This API can be somewhat awkward to use directly, and it is expected
that most plugin or host developers will wrap the API in higher level C
or C++ structures.

There are open source host and plugin side API C wrappers available from the openfx.org git repository [https://github.com/ofxa/openfx].
As you work through the examples you’ll see that I actually start wrapping up various entities within the API
into C classes as it can get unwieldy otherwise.

License

Please feel free to use any of the code you find here, provided you
adhere to the BSD style license you’ll find at the top of each header
file.

Index

 _
 | K
 | O

_

 	
 	__OFXGPURENDER_H__ (C macro), [1], [2]

 	
 	_ofxImageEffect_h_ (C macro), [1]

 	_ofxOpenGLRender_h_ (C macro), [1]

K

 	
 	kOfxActionBeginInstanceChanged (C macro), [1], [2]

 	kOfxActionBeginInstanceEdit (C macro), [1], [2]

 	kOfxActionCreateInstance (C macro), [1], [2]

 	kOfxActionCreateInstanceInteract (C macro), [1], [2]

 	kOfxActionDescribe (C macro), [1], [2]

 	kOfxActionDescribeInteract (C macro), [1], [2]

 	kOfxActionDestroyInstance (C macro), [1], [2]

 	kOfxActionDestroyInstanceInteract (C macro), [1], [2]

 	kOfxActionDialog (C macro), [1]

 	kOfxActionEndInstanceChanged (C macro), [1], [2]

 	kOfxActionEndInstanceEdit (C macro), [1], [2]

 	kOfxActionInstanceChanged (C macro), [1], [2]

 	kOfxActionLoad (C macro), [1], [2]

 	kOfxActionOpenGLContextAttached (C macro), [1], [2], [3], [4]

 	kOfxActionOpenGLContextDetached (C macro), [1], [2], [3], [4]

 	kOfxActionPurgeCaches (C macro), [1], [2]

 	kOfxActionSyncPrivateData (C macro), [1], [2]

 	kOfxActionUnload (C macro), [1], [2]

 	kOfxBitDepthByte (C macro), [1], [2]

 	kOfxBitDepthFloat (C macro), [1], [2]

 	kOfxBitDepthHalf (C macro), [1], [2]

 	kOfxBitDepthNone (C macro), [1], [2]

 	kOfxBitDepthShort (C macro), [1], [2]

 	kOfxChangePluginEdited (C macro), [1], [2]

 	kOfxChangeTime (C macro), [1], [2]

 	kOfxChangeUserEdited (C macro), [1], [2]

 	kOfxDialogSuite (C macro), [1]

 	kOfxDrawSuite (C macro), [1]

 	kOfxFlagInfiniteMax (C macro), [1], [2]

 	kOfxFlagInfiniteMin (C macro), [1], [2]

 	kOfxHostNativeOriginBottomLeft (C macro), [1]

 	kOfxHostNativeOriginCenter (C macro), [1]

 	kOfxHostNativeOriginTopLeft (C macro), [1]

 	kOfxImageClipPropConnected (C macro), [1], [2]

 	kOfxImageClipPropContinuousSamples (C macro), [1], [2]

 	kOfxImageClipPropFieldExtraction (C macro), [1], [2]

 	kOfxImageClipPropFieldOrder (C macro), [1], [2]

 	kOfxImageClipPropIsMask (C macro), [1], [2]

 	kOfxImageClipPropOptional (C macro), [1], [2]

 	kOfxImageClipPropUnmappedComponents (C macro), [1], [2]

 	kOfxImageClipPropUnmappedPixelDepth (C macro), [1], [2]

 	kOfxImageComponentAlpha (C macro), [1], [2]

 	kOfxImageComponentNone (C macro), [1], [2]

 	kOfxImageComponentRGB (C macro), [1], [2]

 	kOfxImageComponentRGBA (C macro), [1], [2]

 	kOfxImageComponentYUVA (C macro), [1]

 	kOfxImageEffectActionBeginSequenceRender (C macro), [1], [2]

 	kOfxImageEffectActionDescribeInContext (C macro), [1], [2]

 	kOfxImageEffectActionEndSequenceRender (C macro), [1], [2]

 	kOfxImageEffectActionGetClipPreferences (C macro), [1], [2]

 	kOfxImageEffectActionGetFramesNeeded (C macro), [1], [2]

 	kOfxImageEffectActionGetRegionOfDefinition (C macro), [1], [2]

 	kOfxImageEffectActionGetRegionsOfInterest (C macro), [1], [2]

 	kOfxImageEffectActionGetTimeDomain (C macro), [1], [2]

 	kOfxImageEffectActionIsIdentity (C macro), [1], [2]

 	kOfxImageEffectActionRender (C macro), [1], [2]

 	kOfxImageEffectContextFilter (C macro), [1]

 	kOfxImageEffectContextGeneral (C macro), [1]

 	kOfxImageEffectContextGenerator (C macro), [1]

 	kOfxImageEffectContextPaint (C macro), [1]

 	kOfxImageEffectContextRetimer (C macro), [1]

 	kOfxImageEffectContextTransition (C macro), [1]

 	kOfxImageEffectFrameVarying (C macro), [1], [2]

 	kOfxImageEffectHostPropIsBackground (C macro), [1], [2]

 	kOfxImageEffectHostPropNativeOrigin (C macro), [1]

 	kOfxImageEffectInstancePropEffectDuration (C macro), [1], [2]

 	kOfxImageEffectInstancePropSequentialRender (C macro), [1], [2]

 	kOfxImageEffectOutputClipName (C macro), [1]

 	kOfxImageEffectPluginApi (C macro), [1], [2]

 	kOfxImageEffectPluginApiVersion (C macro), [1]

 	kOfxImageEffectPluginPropFieldRenderTwiceAlways (C macro), [1], [2]

 	kOfxImageEffectPluginPropGrouping (C macro), [1], [2]

 	kOfxImageEffectPluginPropHostFrameThreading (C macro), [1], [2]

 	kOfxImageEffectPluginPropOverlayInteractV1 (C macro), [1], [2]

 	kOfxImageEffectPluginPropOverlayInteractV2 (C macro), [1], [2]

 	kOfxImageEffectPluginPropSingleInstance (C macro), [1], [2]

 	kOfxImageEffectPluginRenderThreadSafety (C macro), [1], [2]

 	kOfxImageEffectPropClipPreferencesSlaveParam (C macro), [1], [2]

 	kOfxImageEffectPropComponents (C macro), [1], [2]

 	kOfxImageEffectPropContext (C macro), [1], [2]

 	kOfxImageEffectPropCudaEnabled (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropCudaRenderSupported (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropCudaStream (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropCudaStreamSupported (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropFieldToRender (C macro), [1], [2]

 	kOfxImageEffectPropFrameRange (C macro), [1], [2]

 	kOfxImageEffectPropFrameRate (C macro), [1], [2]

 	kOfxImageEffectPropFrameStep (C macro), [1], [2]

 	kOfxImageEffectPropInAnalysis (C macro), [1], [2]

 	kOfxImageEffectPropInteractiveRenderStatus (C macro), [1], [2]

 	kOfxImageEffectPropMetalCommandQueue (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropMetalEnabled (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropMetalRenderSupported (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropOpenCLCommandQueue (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropOpenCLEnabled (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropOpenCLRenderSupported (C macro), [1], [2], [3], [4], [5], [6]

 	kOfxImageEffectPropOpenGLEnabled (C macro), [1], [2], [3], [4], [5]

 	kOfxImageEffectPropOpenGLRenderSupported (C macro), [1], [2], [3], [4], [5]

 	kOfxImageEffectPropOpenGLTextureIndex (C macro), [1], [2], [3], [4], [5]

 	kOfxImageEffectPropOpenGLTextureTarget (C macro), [1], [2], [3], [4], [5]

 	kOfxImageEffectPropPixelDepth (C macro), [1], [2]

 	kOfxImageEffectPropPluginHandle (C macro), [1], [2]

 	kOfxImageEffectPropPreMultiplication (C macro), [1], [2]

 	kOfxImageEffectPropProjectExtent (C macro), [1], [2]

 	kOfxImageEffectPropProjectOffset (C macro), [1], [2]

 	kOfxImageEffectPropProjectPixelAspectRatio (C macro), [1], [2]

 	kOfxImageEffectPropProjectSize (C macro), [1], [2]

 	kOfxImageEffectPropRegionOfDefinition (C macro), [1], [2]

 	kOfxImageEffectPropRegionOfInterest (C macro), [1], [2]

 	kOfxImageEffectPropRenderQualityDraft (C macro), [1], [2]

 	kOfxImageEffectPropRenderScale (C macro), [1], [2]

 	kOfxImageEffectPropRenderWindow (C macro), [1], [2]

 	kOfxImageEffectPropSequentialRenderStatus (C macro), [1], [2]

 	kOfxImageEffectPropSetableFielding (C macro), [1], [2]

 	kOfxImageEffectPropSetableFrameRate (C macro), [1], [2]

 	kOfxImageEffectPropSupportedComponents (C macro), [1], [2]

 	kOfxImageEffectPropSupportedContexts (C macro), [1], [2]

 	kOfxImageEffectPropSupportedPixelDepths (C macro), [1], [2]

 	kOfxImageEffectPropSupportsMultipleClipDepths (C macro), [1], [2]

 	kOfxImageEffectPropSupportsMultipleClipPARs (C macro), [1], [2]

 	kOfxImageEffectPropSupportsMultiResolution (C macro), [1], [2]

 	kOfxImageEffectPropSupportsOverlays (C macro), [1], [2]

 	kOfxImageEffectPropSupportsTiles (C macro), [1], [2]

 	kOfxImageEffectPropTemporalClipAccess (C macro), [1], [2]

 	kOfxImageEffectPropUnmappedFrameRange (C macro), [1], [2]

 	kOfxImageEffectPropUnmappedFrameRate (C macro), [1], [2]

 	kOfxImageEffectRenderFullySafe (C macro), [1], [2]

 	kOfxImageEffectRenderInstanceSafe (C macro), [1], [2]

 	kOfxImageEffectRenderUnsafe (C macro), [1], [2]

 	kOfxImageEffectRetimerParamName (C macro), [1]

 	kOfxImageEffectSimpleSourceClipName (C macro), [1]

 	kOfxImageEffectSuite (C macro), [1]

 	kOfxImageEffectTransitionParamName (C macro), [1]

 	kOfxImageEffectTransitionSourceFromClipName (C macro), [1]

 	kOfxImageEffectTransitionSourceToClipName (C macro), [1]

 	kOfxImageFieldBoth (C macro), [1], [2]

 	kOfxImageFieldDoubled (C macro), [1]

 	kOfxImageFieldLower (C macro), [1], [2], [3]

 	kOfxImageFieldNone (C macro), [1], [2], [3]

 	kOfxImageFieldSingle (C macro), [1]

 	kOfxImageFieldUpper (C macro), [1], [2], [3]

 	kOfxImageOpaque (C macro), [1], [2]

 	kOfxImagePreMultiplied (C macro), [1], [2]

 	kOfxImagePropBounds (C macro), [1], [2]

 	kOfxImagePropData (C macro), [1], [2]

 	kOfxImagePropField (C macro), [1], [2]

 	kOfxImagePropPixelAspectRatio (C macro), [1], [2]

 	kOfxImagePropRegionOfDefinition (C macro), [1], [2]

 	kOfxImagePropRowBytes (C macro), [1], [2]

 	kOfxImagePropUniqueIdentifier (C macro), [1], [2]

 	kOfxImageUnPreMultiplied (C macro), [1], [2]

 	kOfxInteractActionDraw (C macro), [1], [2]

 	kOfxInteractActionGainFocus (C macro), [1], [2]

 	kOfxInteractActionKeyDown (C macro), [1], [2]

 	kOfxInteractActionKeyRepeat (C macro), [1], [2]

 	kOfxInteractActionKeyUp (C macro), [1], [2]

 	kOfxInteractActionLoseFocus (C macro), [1], [2]

 	kOfxInteractActionPenDown (C macro), [1], [2]

 	kOfxInteractActionPenMotion (C macro), [1], [2]

 	kOfxInteractActionPenUp (C macro), [1], [2]

 	kOfxInteractPropBackgroundColour (C macro), [1], [2]

 	kOfxInteractPropBitDepth (C macro), [1], [2]

 	kOfxInteractPropDrawContext (C macro), [1], [2], [3]

 	kOfxInteractPropHasAlpha (C macro), [1], [2]

 	kOfxInteractPropPenPosition (C macro), [1], [2]

 	kOfxInteractPropPenPressure (C macro), [1], [2]

 	kOfxInteractPropPenViewportPosition (C macro), [1], [2]

 	kOfxInteractPropPixelScale (C macro), [1], [2]

 	kOfxInteractPropSlaveToParam (C macro), [1], [2]

 	kOfxInteractPropSuggestedColour (C macro), [1], [2]

 	kOfxInteractPropViewportSize (C macro), [1], [2]

 	kOfxInteractSuite (C macro), [1]

 	kOfxKey_0 (C macro), [1]

 	kOfxKey_1 (C macro), [1]

 	kOfxKey_2 (C macro), [1]

 	kOfxKey_3 (C macro), [1]

 	kOfxKey_4 (C macro), [1]

 	kOfxKey_5 (C macro), [1]

 	kOfxKey_6 (C macro), [1]

 	kOfxKey_7 (C macro), [1]

 	kOfxKey_8 (C macro), [1]

 	kOfxKey_9 (C macro), [1]

 	kOfxKey_A (C macro), [1]

 	kOfxKey_a (C macro), [1]

 	kOfxKey_Aacute (C macro), [1]

 	kOfxKey_aacute (C macro), [1]

 	kOfxKey_Acircumflex (C macro), [1]

 	kOfxKey_acircumflex (C macro), [1]

 	kOfxKey_acute (C macro), [1]

 	kOfxKey_Adiaeresis (C macro), [1]

 	kOfxKey_adiaeresis (C macro), [1]

 	kOfxKey_AE (C macro), [1]

 	kOfxKey_ae (C macro), [1]

 	kOfxKey_Agrave (C macro), [1]

 	kOfxKey_agrave (C macro), [1]

 	kOfxKey_Alt_L (C macro), [1]

 	kOfxKey_Alt_R (C macro), [1]

 	kOfxKey_ampersand (C macro), [1]

 	kOfxKey_apostrophe (C macro), [1]

 	kOfxKey_Aring (C macro), [1]

 	kOfxKey_aring (C macro), [1]

 	kOfxKey_asciicircum (C macro), [1]

 	kOfxKey_asciitilde (C macro), [1]

 	kOfxKey_asterisk (C macro), [1]

 	kOfxKey_at (C macro), [1]

 	kOfxKey_Atilde (C macro), [1]

 	kOfxKey_atilde (C macro), [1]

 	kOfxKey_B (C macro), [1]

 	kOfxKey_b (C macro), [1]

 	kOfxKey_backslash (C macro), [1]

 	kOfxKey_BackSpace (C macro), [1]

 	kOfxKey_bar (C macro), [1]

 	kOfxKey_Begin (C macro), [1]

 	kOfxKey_braceleft (C macro), [1]

 	kOfxKey_braceright (C macro), [1]

 	kOfxKey_bracketleft (C macro), [1]

 	kOfxKey_bracketright (C macro), [1]

 	kOfxKey_Break (C macro), [1]

 	kOfxKey_brokenbar (C macro), [1]

 	kOfxKey_C (C macro), [1]

 	kOfxKey_c (C macro), [1]

 	kOfxKey_Cancel (C macro), [1]

 	kOfxKey_Caps_Lock (C macro), [1]

 	kOfxKey_Ccedilla (C macro), [1]

 	kOfxKey_ccedilla (C macro), [1]

 	kOfxKey_cedilla (C macro), [1]

 	kOfxKey_cent (C macro), [1]

 	kOfxKey_Clear (C macro), [1]

 	kOfxKey_colon (C macro), [1]

 	kOfxKey_comma (C macro), [1]

 	kOfxKey_Control_L (C macro), [1]

 	kOfxKey_Control_R (C macro), [1]

 	kOfxKey_copyright (C macro), [1]

 	kOfxKey_currency (C macro), [1]

 	kOfxKey_D (C macro), [1]

 	kOfxKey_d (C macro), [1]

 	kOfxKey_degree (C macro), [1]

 	kOfxKey_Delete (C macro), [1]

 	kOfxKey_diaeresis (C macro), [1]

 	kOfxKey_division (C macro), [1]

 	kOfxKey_dollar (C macro), [1]

 	kOfxKey_Down (C macro), [1]

 	kOfxKey_E (C macro), [1]

 	kOfxKey_e (C macro), [1]

 	kOfxKey_Eacute (C macro), [1]

 	kOfxKey_eacute (C macro), [1]

 	kOfxKey_Ecircumflex (C macro), [1]

 	kOfxKey_ecircumflex (C macro), [1]

 	kOfxKey_Ediaeresis (C macro), [1]

 	kOfxKey_ediaeresis (C macro), [1]

 	kOfxKey_Egrave (C macro), [1]

 	kOfxKey_egrave (C macro), [1]

 	kOfxKey_Eisu_Shift (C macro), [1]

 	kOfxKey_Eisu_toggle (C macro), [1]

 	kOfxKey_End (C macro), [1]

 	kOfxKey_equal (C macro), [1]

 	kOfxKey_Escape (C macro), [1]

 	kOfxKey_ETH (C macro), [1]

 	kOfxKey_Eth (C macro), [1]

 	kOfxKey_eth (C macro), [1]

 	kOfxKey_exclam (C macro), [1]

 	kOfxKey_exclamdown (C macro), [1]

 	kOfxKey_Execute (C macro), [1]

 	kOfxKey_F (C macro), [1]

 	kOfxKey_f (C macro), [1]

 	kOfxKey_F1 (C macro), [1]

 	kOfxKey_F10 (C macro), [1]

 	kOfxKey_F11 (C macro), [1]

 	kOfxKey_F12 (C macro), [1]

 	kOfxKey_F13 (C macro), [1]

 	kOfxKey_F14 (C macro), [1]

 	kOfxKey_F15 (C macro), [1]

 	kOfxKey_F16 (C macro), [1]

 	kOfxKey_F17 (C macro), [1]

 	kOfxKey_F18 (C macro), [1]

 	kOfxKey_F19 (C macro), [1]

 	kOfxKey_F2 (C macro), [1]

 	kOfxKey_F20 (C macro), [1]

 	kOfxKey_F21 (C macro), [1]

 	kOfxKey_F22 (C macro), [1]

 	kOfxKey_F23 (C macro), [1]

 	kOfxKey_F24 (C macro), [1]

 	kOfxKey_F25 (C macro), [1]

 	kOfxKey_F26 (C macro), [1]

 	kOfxKey_F27 (C macro), [1]

 	kOfxKey_F28 (C macro), [1]

 	kOfxKey_F29 (C macro), [1]

 	kOfxKey_F3 (C macro), [1]

 	kOfxKey_F30 (C macro), [1]

 	kOfxKey_F31 (C macro), [1]

 	kOfxKey_F32 (C macro), [1]

 	kOfxKey_F33 (C macro), [1]

 	kOfxKey_F34 (C macro), [1]

 	kOfxKey_F35 (C macro), [1]

 	kOfxKey_F4 (C macro), [1]

 	kOfxKey_F5 (C macro), [1]

 	kOfxKey_F6 (C macro), [1]

 	kOfxKey_F7 (C macro), [1]

 	kOfxKey_F8 (C macro), [1]

 	kOfxKey_F9 (C macro), [1]

 	kOfxKey_Find (C macro), [1]

 	kOfxKey_G (C macro), [1]

 	kOfxKey_g (C macro), [1]

 	kOfxKey_grave (C macro), [1]

 	kOfxKey_greater (C macro), [1]

 	kOfxKey_guillemotleft (C macro), [1]

 	kOfxKey_guillemotright (C macro), [1]

 	kOfxKey_H (C macro), [1]

 	kOfxKey_h (C macro), [1]

 	kOfxKey_Hankaku (C macro), [1]

 	kOfxKey_Help (C macro), [1]

 	kOfxKey_Henkan (C macro), [1]

 	kOfxKey_Henkan_Mode (C macro), [1]

 	kOfxKey_Hiragana (C macro), [1]

 	kOfxKey_Hiragana_Katakana (C macro), [1]

 	kOfxKey_Home (C macro), [1]

 	kOfxKey_Hyper_L (C macro), [1]

 	kOfxKey_Hyper_R (C macro), [1]

 	kOfxKey_hyphen (C macro), [1]

 	kOfxKey_I (C macro), [1]

 	kOfxKey_i (C macro), [1]

 	kOfxKey_Iacute (C macro), [1]

 	kOfxKey_iacute (C macro), [1]

 	kOfxKey_Icircumflex (C macro), [1]

 	kOfxKey_icircumflex (C macro), [1]

 	kOfxKey_Idiaeresis (C macro), [1]

 	kOfxKey_idiaeresis (C macro), [1]

 	kOfxKey_Igrave (C macro), [1]

 	kOfxKey_igrave (C macro), [1]

 	kOfxKey_Insert (C macro), [1]

 	kOfxKey_J (C macro), [1]

 	kOfxKey_j (C macro), [1]

 	kOfxKey_K (C macro), [1]

 	kOfxKey_k (C macro), [1]

 	kOfxKey_Kana_Lock (C macro), [1]

 	kOfxKey_Kana_Shift (C macro), [1]

 	kOfxKey_Kanji (C macro), [1]

 	kOfxKey_Katakana (C macro), [1]

 	kOfxKey_KP_0 (C macro), [1]

 	kOfxKey_KP_1 (C macro), [1]

 	kOfxKey_KP_2 (C macro), [1]

 	kOfxKey_KP_3 (C macro), [1]

 	kOfxKey_KP_4 (C macro), [1]

 	kOfxKey_KP_5 (C macro), [1]

 	kOfxKey_KP_6 (C macro), [1]

 	kOfxKey_KP_7 (C macro), [1]

 	kOfxKey_KP_8 (C macro), [1]

 	kOfxKey_KP_9 (C macro), [1]

 	kOfxKey_KP_Add (C macro), [1]

 	kOfxKey_KP_Begin (C macro), [1]

 	
 	kOfxKey_KP_Decimal (C macro), [1]

 	kOfxKey_KP_Delete (C macro), [1]

 	kOfxKey_KP_Divide (C macro), [1]

 	kOfxKey_KP_Down (C macro), [1]

 	kOfxKey_KP_End (C macro), [1]

 	kOfxKey_KP_Enter (C macro), [1]

 	kOfxKey_KP_Equal (C macro), [1]

 	kOfxKey_KP_F1 (C macro), [1]

 	kOfxKey_KP_F2 (C macro), [1]

 	kOfxKey_KP_F3 (C macro), [1]

 	kOfxKey_KP_F4 (C macro), [1]

 	kOfxKey_KP_Home (C macro), [1]

 	kOfxKey_KP_Insert (C macro), [1]

 	kOfxKey_KP_Left (C macro), [1]

 	kOfxKey_KP_Multiply (C macro), [1]

 	kOfxKey_KP_Next (C macro), [1]

 	kOfxKey_KP_Page_Down (C macro), [1]

 	kOfxKey_KP_Page_Up (C macro), [1]

 	kOfxKey_KP_Prior (C macro), [1]

 	kOfxKey_KP_Right (C macro), [1]

 	kOfxKey_KP_Separator (C macro), [1]

 	kOfxKey_KP_Space (C macro), [1]

 	kOfxKey_KP_Subtract (C macro), [1]

 	kOfxKey_KP_Tab (C macro), [1]

 	kOfxKey_KP_Up (C macro), [1]

 	kOfxKey_L (C macro), [1]

 	kOfxKey_l (C macro), [1]

 	kOfxKey_L1 (C macro), [1]

 	kOfxKey_L10 (C macro), [1]

 	kOfxKey_L2 (C macro), [1]

 	kOfxKey_L3 (C macro), [1]

 	kOfxKey_L4 (C macro), [1]

 	kOfxKey_L5 (C macro), [1]

 	kOfxKey_L6 (C macro), [1]

 	kOfxKey_L7 (C macro), [1]

 	kOfxKey_L8 (C macro), [1]

 	kOfxKey_L9 (C macro), [1]

 	kOfxKey_Left (C macro), [1]

 	kOfxKey_less (C macro), [1]

 	kOfxKey_Linefeed (C macro), [1]

 	kOfxKey_M (C macro), [1]

 	kOfxKey_m (C macro), [1]

 	kOfxKey_macron (C macro), [1]

 	kOfxKey_Mae_Koho (C macro), [1]

 	kOfxKey_masculine (C macro), [1]

 	kOfxKey_Massyo (C macro), [1]

 	kOfxKey_Menu (C macro), [1]

 	kOfxKey_Meta_L (C macro), [1]

 	kOfxKey_Meta_R (C macro), [1]

 	kOfxKey_minus (C macro), [1]

 	kOfxKey_Mode_switch (C macro), [1]

 	kOfxKey_mu (C macro), [1]

 	kOfxKey_Muhenkan (C macro), [1]

 	kOfxKey_Multi_key (C macro), [1]

 	kOfxKey_MultipleCandidate (C macro), [1]

 	kOfxKey_multiply (C macro), [1]

 	kOfxKey_N (C macro), [1]

 	kOfxKey_n (C macro), [1]

 	kOfxKey_Next (C macro), [1]

 	kOfxKey_nobreakspace (C macro), [1]

 	kOfxKey_notsign (C macro), [1]

 	kOfxKey_Ntilde (C macro), [1]

 	kOfxKey_ntilde (C macro), [1]

 	kOfxKey_Num_Lock (C macro), [1]

 	kOfxKey_numbersign (C macro), [1]

 	kOfxKey_O (C macro), [1]

 	kOfxKey_o (C macro), [1]

 	kOfxKey_Oacute (C macro), [1]

 	kOfxKey_oacute (C macro), [1]

 	kOfxKey_Ocircumflex (C macro), [1]

 	kOfxKey_ocircumflex (C macro), [1]

 	kOfxKey_Odiaeresis (C macro), [1]

 	kOfxKey_odiaeresis (C macro), [1]

 	kOfxKey_Ograve (C macro), [1]

 	kOfxKey_ograve (C macro), [1]

 	kOfxKey_onehalf (C macro), [1]

 	kOfxKey_onequarter (C macro), [1]

 	kOfxKey_onesuperior (C macro), [1]

 	kOfxKey_Ooblique (C macro), [1]

 	kOfxKey_ordfeminine (C macro), [1]

 	kOfxKey_oslash (C macro), [1]

 	kOfxKey_Otilde (C macro), [1]

 	kOfxKey_otilde (C macro), [1]

 	kOfxKey_P (C macro), [1]

 	kOfxKey_p (C macro), [1]

 	kOfxKey_Page_Down (C macro), [1]

 	kOfxKey_Page_Up (C macro), [1]

 	kOfxKey_paragraph (C macro), [1]

 	kOfxKey_parenleft (C macro), [1]

 	kOfxKey_parenright (C macro), [1]

 	kOfxKey_Pause (C macro), [1]

 	kOfxKey_percent (C macro), [1]

 	kOfxKey_period (C macro), [1]

 	kOfxKey_periodcentered (C macro), [1]

 	kOfxKey_plus (C macro), [1]

 	kOfxKey_plusminus (C macro), [1]

 	kOfxKey_PreviousCandidate (C macro), [1]

 	kOfxKey_Print (C macro), [1]

 	kOfxKey_Prior (C macro), [1]

 	kOfxKey_Q (C macro), [1]

 	kOfxKey_q (C macro), [1]

 	kOfxKey_question (C macro), [1]

 	kOfxKey_questiondown (C macro), [1]

 	kOfxKey_quotedbl (C macro), [1]

 	kOfxKey_quoteleft (C macro), [1]

 	kOfxKey_quoteright (C macro), [1]

 	kOfxKey_R (C macro), [1]

 	kOfxKey_r (C macro), [1]

 	kOfxKey_R1 (C macro), [1]

 	kOfxKey_R10 (C macro), [1]

 	kOfxKey_R11 (C macro), [1]

 	kOfxKey_R12 (C macro), [1]

 	kOfxKey_R13 (C macro), [1]

 	kOfxKey_R14 (C macro), [1]

 	kOfxKey_R15 (C macro), [1]

 	kOfxKey_R2 (C macro), [1]

 	kOfxKey_R3 (C macro), [1]

 	kOfxKey_R4 (C macro), [1]

 	kOfxKey_R5 (C macro), [1]

 	kOfxKey_R6 (C macro), [1]

 	kOfxKey_R7 (C macro), [1]

 	kOfxKey_R8 (C macro), [1]

 	kOfxKey_R9 (C macro), [1]

 	kOfxKey_Redo (C macro), [1]

 	kOfxKey_registered (C macro), [1]

 	kOfxKey_Return (C macro), [1]

 	kOfxKey_Right (C macro), [1]

 	kOfxKey_Romaji (C macro), [1]

 	kOfxKey_S (C macro), [1]

 	kOfxKey_s (C macro), [1]

 	kOfxKey_script_switch (C macro), [1]

 	kOfxKey_Scroll_Lock (C macro), [1]

 	kOfxKey_section (C macro), [1]

 	kOfxKey_Select (C macro), [1]

 	kOfxKey_semicolon (C macro), [1]

 	kOfxKey_Shift_L (C macro), [1]

 	kOfxKey_Shift_Lock (C macro), [1]

 	kOfxKey_Shift_R (C macro), [1]

 	kOfxKey_SingleCandidate (C macro), [1]

 	kOfxKey_slash (C macro), [1]

 	kOfxKey_space (C macro), [1]

 	kOfxKey_ssharp (C macro), [1]

 	kOfxKey_sterling (C macro), [1]

 	kOfxKey_Super_L (C macro), [1]

 	kOfxKey_Super_R (C macro), [1]

 	kOfxKey_Sys_Req (C macro), [1]

 	kOfxKey_T (C macro), [1]

 	kOfxKey_t (C macro), [1]

 	kOfxKey_Tab (C macro), [1]

 	kOfxKey_THORN (C macro), [1]

 	kOfxKey_thorn (C macro), [1]

 	kOfxKey_threequarters (C macro), [1]

 	kOfxKey_threesuperior (C macro), [1]

 	kOfxKey_Touroku (C macro), [1]

 	kOfxKey_twosuperior (C macro), [1]

 	kOfxKey_U (C macro), [1]

 	kOfxKey_u (C macro), [1]

 	kOfxKey_Uacute (C macro), [1]

 	kOfxKey_uacute (C macro), [1]

 	kOfxKey_Ucircumflex (C macro), [1]

 	kOfxKey_ucircumflex (C macro), [1]

 	kOfxKey_Udiaeresis (C macro), [1]

 	kOfxKey_udiaeresis (C macro), [1]

 	kOfxKey_Ugrave (C macro), [1]

 	kOfxKey_ugrave (C macro), [1]

 	kOfxKey_underscore (C macro), [1]

 	kOfxKey_Undo (C macro), [1]

 	kOfxKey_Unknown (C macro), [1]

 	kOfxKey_Up (C macro), [1]

 	kOfxKey_V (C macro), [1]

 	kOfxKey_v (C macro), [1]

 	kOfxKey_W (C macro), [1]

 	kOfxKey_w (C macro), [1]

 	kOfxKey_X (C macro), [1]

 	kOfxKey_x (C macro), [1]

 	kOfxKey_Y (C macro), [1]

 	kOfxKey_y (C macro), [1]

 	kOfxKey_Yacute (C macro), [1]

 	kOfxKey_yacute (C macro), [1]

 	kOfxKey_ydiaeresis (C macro), [1]

 	kOfxKey_yen (C macro), [1]

 	kOfxKey_Z (C macro), [1]

 	kOfxKey_z (C macro), [1]

 	kOfxKey_Zen_Koho (C macro), [1]

 	kOfxKey_Zenkaku (C macro), [1]

 	kOfxKey_Zenkaku_Hankaku (C macro), [1]

 	kOfxMemorySuite (C macro), [1]

 	kOfxMessageError (C macro), [1]

 	kOfxMessageFatal (C macro), [1]

 	kOfxMessageLog (C macro), [1]

 	kOfxMessageMessage (C macro), [1]

 	kOfxMessageQuestion (C macro), [1]

 	kOfxMessageSuite (C macro), [1]

 	kOfxMessageWarning (C macro), [1]

 	kOfxMultiThreadSuite (C macro), [1]

 	kOfxOpenGLPropPixelDepth (C macro), [1], [2], [3], [4], [5]

 	kOfxOpenGLRenderSuite (C macro), [1], [2], [3], [4]

 	kOfxParamCoordinatesCanonical (C macro), [1], [2]

 	kOfxParamCoordinatesNormalised (C macro), [1], [2]

 	kOfxParamDoubleTypeAbsoluteTime (C macro), [1], [2]

 	kOfxParamDoubleTypeAngle (C macro), [1], [2]

 	kOfxParamDoubleTypeNormalisedX (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeNormalisedXAbsolute (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeNormalisedXY (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeNormalisedXYAbsolute (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeNormalisedY (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeNormalisedYAbsolute (C macro), [1], [2], [3]

 	kOfxParamDoubleTypePlain (C macro), [1], [2]

 	kOfxParamDoubleTypeScale (C macro), [1], [2]

 	kOfxParamDoubleTypeTime (C macro), [1], [2]

 	kOfxParamDoubleTypeX (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeXAbsolute (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeXY (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeXYAbsolute (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeY (C macro), [1], [2], [3]

 	kOfxParamDoubleTypeYAbsolute (C macro), [1], [2], [3]

 	kOfxParameterSuite (C macro), [1]

 	kOfxParametricParameterSuite (C macro), [1]

 	kOfxParamHostPropMaxPages (C macro), [1], [2]

 	kOfxParamHostPropMaxParameters (C macro), [1], [2]

 	kOfxParamHostPropPageRowColumnCount (C macro), [1], [2]

 	kOfxParamHostPropSupportsBooleanAnimation (C macro), [1], [2]

 	kOfxParamHostPropSupportsChoiceAnimation (C macro), [1], [2]

 	kOfxParamHostPropSupportsCustomAnimation (C macro), [1], [2]

 	kOfxParamHostPropSupportsCustomInteract (C macro), [1], [2]

 	kOfxParamHostPropSupportsParametricAnimation (C macro), [1], [2]

 	kOfxParamHostPropSupportsStringAnimation (C macro), [1], [2]

 	kOfxParamInvalidateAll (C macro), [1]

 	kOfxParamInvalidateValueChange (C macro), [1]

 	kOfxParamInvalidateValueChangeToEnd (C macro), [1]

 	kOfxParamPageSkipColumn (C macro), [1], [2]

 	kOfxParamPageSkipRow (C macro), [1], [2]

 	kOfxParamPropAnimates (C macro), [1], [2]

 	kOfxParamPropCacheInvalidation (C macro), [1], [2]

 	kOfxParamPropCanUndo (C macro), [1], [2]

 	kOfxParamPropChoiceOption (C macro), [1], [2]

 	kOfxParamPropCustomInterpCallbackV1 (C macro), [1], [2]

 	kOfxParamPropCustomValue (C macro), [1], [2]

 	kOfxParamPropDataPtr (C macro), [1], [2]

 	kOfxParamPropDefault (C macro), [1], [2]

 	kOfxParamPropDefaultCoordinateSystem (C macro), [1], [2]

 	kOfxParamPropDigits (C macro), [1], [2]

 	kOfxParamPropDimensionLabel (C macro), [1], [2]

 	kOfxParamPropDisplayMax (C macro), [1], [2]

 	kOfxParamPropDisplayMin (C macro), [1], [2]

 	kOfxParamPropDoubleType (C macro), [1], [2]

 	kOfxParamPropEnabled (C macro), [1], [2]

 	kOfxParamPropEvaluateOnChange (C macro), [1], [2]

 	kOfxParamPropGroupOpen (C macro), [1], [2]

 	kOfxParamPropHasHostOverlayHandle (C macro), [1], [2]

 	kOfxParamPropHint (C macro), [1], [2]

 	kOfxParamPropIncrement (C macro), [1], [2]

 	kOfxParamPropInteractMinimumSize (C macro), [1], [2]

 	kOfxParamPropInteractPreferedSize (C macro), [1], [2]

 	kOfxParamPropInteractSize (C macro), [1], [2]

 	kOfxParamPropInteractSizeAspect (C macro), [1], [2]

 	kOfxParamPropInteractV1 (C macro), [1], [2]

 	kOfxParamPropInterpolationAmount (C macro), [1], [2]

 	kOfxParamPropInterpolationTime (C macro), [1], [2]

 	kOfxParamPropIsAnimating (C macro), [1], [2]

 	kOfxParamPropIsAutoKeying (C macro), [1], [2]

 	kOfxParamPropMax (C macro), [1], [2]

 	kOfxParamPropMin (C macro), [1], [2]

 	kOfxParamPropPageChild (C macro), [1], [2]

 	kOfxParamPropParametricDimension (C macro), [1], [2]

 	kOfxParamPropParametricInteractBackground (C macro), [1], [2]

 	kOfxParamPropParametricRange (C macro), [1], [2]

 	kOfxParamPropParametricUIColour (C macro), [1], [2]

 	kOfxParamPropParent (C macro), [1], [2]

 	kOfxParamPropPersistant (C macro), [1], [2]

 	kOfxParamPropPluginMayWrite (C macro), [1], [2]

 	kOfxParamPropScriptName (C macro), [1], [2]

 	kOfxParamPropSecret (C macro), [1], [2]

 	kOfxParamPropShowTimeMarker (C macro), [1], [2]

 	kOfxParamPropStringFilePathExists (C macro), [1]

 	kOfxParamPropStringMode (C macro), [1], [2]

 	kOfxParamPropType (C macro), [1], [2]

 	kOfxParamPropUseHostOverlayHandle (C macro), [1], [2]

 	kOfxParamStringIsDirectoryPath (C macro), [1], [2]

 	kOfxParamStringIsFilePath (C macro), [1], [2]

 	kOfxParamStringIsLabel (C macro), [1], [2]

 	kOfxParamStringIsMultiLine (C macro), [1], [2]

 	kOfxParamStringIsRichTextFormat (C macro), [1]

 	kOfxParamStringIsSingleLine (C macro), [1], [2]

 	kOfxParamTypeBoolean (C macro), [1], [2]

 	kOfxParamTypeChoice (C macro), [1], [2]

 	kOfxParamTypeCustom (C macro), [1], [2]

 	kOfxParamTypeDouble (C macro), [1], [2]

 	kOfxParamTypeDouble2D (C macro), [1], [2]

 	kOfxParamTypeDouble3D (C macro), [1], [2]

 	kOfxParamTypeGroup (C macro), [1], [2]

 	kOfxParamTypeInteger (C macro), [1], [2]

 	kOfxParamTypeInteger2D (C macro), [1], [2]

 	kOfxParamTypeInteger3D (C macro), [1], [2]

 	kOfxParamTypePage (C macro), [1], [2]

 	kOfxParamTypeParametric (C macro), [1], [2]

 	kOfxParamTypePushButton (C macro), [1], [2]

 	kOfxParamTypeRGB (C macro), [1], [2]

 	kOfxParamTypeRGBA (C macro), [1], [2]

 	kOfxParamTypeString (C macro), [1], [2]

 	kOfxPluginPropFilePath (C macro), [1], [2]

 	kOfxPluginPropParamPageOrder (C macro), [1], [2]

 	kOfxProgressSuite (C macro), [1]

 	kOfxPropAPIVersion (C macro), [1], [2]

 	kOfxPropChangeReason (C macro), [1], [2]

 	kOfxPropEffectInstance (C macro), [1], [2]

 	kOfxPropertySuite (C macro), [1]

 	kOfxPropHostOSHandle (C macro), [1], [2]

 	kOfxPropIcon (C macro), [1], [2]

 	kOfxPropInstanceData (C macro), [1], [2]

 	kOfxPropIsInteractive (C macro), [1], [2]

 	kOfxPropKeyString (C macro), [1], [2]

 	kOfxPropKeySym (C macro), [1], [2]

 	kOfxPropLabel (C macro), [1], [2]

 	kOfxPropLongLabel (C macro), [1], [2]

 	kOfxPropName (C macro), [1], [2]

 	kOfxPropParamSetNeedsSyncing (C macro), [1], [2]

 	kOfxPropPluginDescription (C macro), [1], [2]

 	kOfxPropShortLabel (C macro), [1], [2]

 	kOfxPropTime (C macro), [1], [2]

 	kOfxPropType (C macro), [1], [2]

 	kOfxPropVersion (C macro), [1], [2]

 	kOfxPropVersionLabel (C macro), [1], [2]

 	kOfxStatErrBadHandle (C macro), [1], [2]

 	kOfxStatErrBadIndex (C macro), [1], [2]

 	kOfxStatErrExists (C macro), [1], [2]

 	kOfxStatErrFatal (C macro), [1], [2]

 	kOfxStatErrFormat (C macro), [1], [2]

 	kOfxStatErrImageFormat (C macro), [1]

 	kOfxStatErrMemory (C macro), [1], [2]

 	kOfxStatErrMissingHostFeature (C macro), [1], [2]

 	kOfxStatErrUnknown (C macro), [1], [2]

 	kOfxStatErrUnsupported (C macro), [1], [2]

 	kOfxStatErrValue (C macro), [1], [2]

 	kOfxStatFailed (C macro), [1], [2]

 	kOfxStatGLOutOfMemory (C macro), [1], [2], [3], [4], [5]

 	kOfxStatGLRenderFailed (C macro), [1], [2], [3], [4], [5]

 	kOfxStatGPUOutOfMemory (C macro), [1], [2], [3], [4], [5]

 	kOfxStatGPURenderFailed (C macro), [1], [2], [3], [4], [5]

 	kOfxStatOK (C macro), [1], [2]

 	kOfxStatReplyDefault (C macro), [1], [2]

 	kOfxStatReplyNo (C macro), [1], [2]

 	kOfxStatReplyYes (C macro), [1], [2]

 	kOfxTimeLineSuite (C macro), [1]

 	kOfxTypeClip (C macro), [1]

 	kOfxTypeImage (C macro), [1]

 	kOfxTypeImageEffect (C macro), [1]

 	kOfxTypeImageEffectHost (C macro), [1]

 	kOfxTypeImageEffectInstance (C macro), [1]

 	kOfxTypeParameter (C macro), [1]

 	kOfxTypeParameterInstance (C macro), [1]

O

 	
 	OfxDialogSuiteV1 (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxDialogSuiteV1::NotifyRedrawPending (C++ member), [1], [2]

 	OfxDialogSuiteV1::RequestDialog (C++ member), [1], [2]

 	OfxDrawContextHandle (C++ type), [1]

 	OfxDrawLineStipplePattern (C++ enum), [1], [2]

 	(C++ type), [1]

 	OfxDrawLineStipplePattern::kOfxDrawLineStipplePatternAltDash (C++ enumerator), [1], [2]

 	OfxDrawLineStipplePattern::kOfxDrawLineStipplePatternDash (C++ enumerator), [1], [2]

 	OfxDrawLineStipplePattern::kOfxDrawLineStipplePatternDot (C++ enumerator), [1], [2]

 	OfxDrawLineStipplePattern::kOfxDrawLineStipplePatternDotDash (C++ enumerator), [1], [2]

 	OfxDrawLineStipplePattern::kOfxDrawLineStipplePatternSolid (C++ enumerator), [1], [2]

 	OfxDrawPrimitive (C++ enum), [1], [2]

 	(C++ type), [1]

 	OfxDrawPrimitive::kOfxDrawPrimitiveEllipse (C++ enumerator), [1], [2]

 	OfxDrawPrimitive::kOfxDrawPrimitiveLineLoop (C++ enumerator), [1], [2]

 	OfxDrawPrimitive::kOfxDrawPrimitiveLines (C++ enumerator), [1], [2]

 	OfxDrawPrimitive::kOfxDrawPrimitiveLineStrip (C++ enumerator), [1], [2]

 	OfxDrawPrimitive::kOfxDrawPrimitivePolygon (C++ enumerator), [1], [2]

 	OfxDrawPrimitive::kOfxDrawPrimitiveRectangle (C++ enumerator), [1], [2]

 	OfxDrawSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxDrawSuiteV1::draw (C++ member), [1], [2], [3]

 	OfxDrawSuiteV1::drawText (C++ member), [1], [2], [3]

 	OfxDrawSuiteV1::getColour (C++ member), [1], [2], [3]

 	OfxDrawSuiteV1::setColour (C++ member), [1], [2], [3]

 	OfxDrawSuiteV1::setLineStipple (C++ member), [1], [2], [3]

 	OfxDrawSuiteV1::setLineWidth (C++ member), [1], [2], [3]

 	OfxDrawTextAlignment (C++ enum), [1]

 	(C++ type), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentBaseline (C++ enumerator), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentBottom (C++ enumerator), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentCenterH (C++ enumerator), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentCenterV (C++ enumerator), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentLeft (C++ enumerator), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentRight (C++ enumerator), [1]

 	OfxDrawTextAlignment::kOfxDrawTextAlignmentTop (C++ enumerator), [1]

 	OfxExport (C macro), [1]

 	OfxGetNumberOfPlugins (C++ function), [1], [2]

 	OfxGetPlugin (C++ function), [1], [2]

 	OfxHost (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxHost::fetchSuite (C++ member), [1], [2], [3]

 	OfxHost::host (C++ member), [1], [2], [3]

 	OfxImageClipHandle (C++ type), [1], [2]

 	OfxImageEffectHandle (C++ type), [1], [2]

 	OfxImageEffectOpenGLRenderSuiteV1 (C++ struct), [1], [2], [3], [4], [5]

 	(C++ type), [1], [2], [3], [4]

 	OfxImageEffectOpenGLRenderSuiteV1::clipFreeTexture (C++ member), [1], [2], [3], [4], [5]

 	OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (C++ member), [1], [2], [3], [4], [5]

 	OfxImageEffectOpenGLRenderSuiteV1::flushResources (C++ member), [1], [2], [3], [4], [5]

 	OfxImageEffectSuiteV1 (C++ struct), [1], [2], [3], [4]

 	(C++ type), [1]

 	OfxImageEffectSuiteV1::abort (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::clipDefine (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::clipGetHandle (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::clipGetImage (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::clipGetPropertySet (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::clipGetRegionOfDefinition (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::clipReleaseImage (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::getParamSet (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::getPropertySet (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::imageMemoryAlloc (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::imageMemoryFree (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::imageMemoryLock (C++ member), [1], [2], [3], [4]

 	OfxImageEffectSuiteV1::imageMemoryUnlock (C++ member), [1], [2], [3], [4]

 	OfxImageMemoryHandle (C++ type), [1]

 	OfxInteractHandle (C++ type), [1], [2]

 	OfxInteractSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxInteractSuiteV1::interactGetPropertySet (C++ member), [1], [2], [3]

 	OfxInteractSuiteV1::interactRedraw (C++ member), [1], [2], [3]

 	OfxInteractSuiteV1::interactSwapBuffers (C++ member), [1], [2], [3]

 	OfxMemorySuiteV1 (C++ struct), [1], [2], [3], [4]

 	(C++ type), [1]

 	OfxMemorySuiteV1::memoryAlloc (C++ member), [1], [2], [3], [4]

 	OfxMemorySuiteV1::memoryFree (C++ member), [1], [2], [3], [4]

 	OfxMessageSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxMessageSuiteV1::message (C++ member), [1], [2], [3]

 	OfxMessageSuiteV2 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxMessageSuiteV2::clearPersistentMessage (C++ member), [1], [2], [3]

 	OfxMessageSuiteV2::message (C++ member), [1], [2], [3]

 	OfxMessageSuiteV2::setPersistentMessage (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxMultiThreadSuiteV1::multiThread (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::multiThreadIndex (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::multiThreadIsSpawnedThread (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::multiThreadNumCPUs (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::mutexCreate (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::mutexDestroy (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::mutexLock (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::mutexTryLock (C++ member), [1], [2], [3]

 	OfxMultiThreadSuiteV1::mutexUnLock (C++ member), [1], [2], [3]

 	OfxMutexHandle (C++ type), [1]

 	OfxParameterSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxParameterSuiteV1::paramCopy (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramDefine (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramDeleteAllKeys (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramDeleteKey (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramEditBegin (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramEditEnd (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetDerivative (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetHandle (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetIntegral (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetKeyIndex (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetKeyTime (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetNumKeys (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetPropertySet (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetValue (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramGetValueAtTime (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramSetGetPropertySet (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramSetValue (C++ member), [1], [2], [3]

 	OfxParameterSuiteV1::paramSetValueAtTime (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxParametricParameterSuiteV1::parametricParamAddControlPoint (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1::parametricParamDeleteAllControlPoints (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1::parametricParamDeleteControlPoint (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1::parametricParamGetNControlPoints (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1::parametricParamGetNthControlPoint (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1::parametricParamGetValue (C++ member), [1], [2], [3]

 	OfxParametricParameterSuiteV1::parametricParamSetNthControlPoint (C++ member), [1], [2], [3]

 	OfxParamHandle (C++ type), [1], [2]

 	OfxParamSetHandle (C++ type), [1]

 	OfxPlugin (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxPlugin::apiVersion (C++ member), [1], [2]

 	OfxPlugin::mainEntry (C++ member), [1], [2]

 	OfxPlugin::pluginApi (C++ member), [1], [2]

 	OfxPlugin::pluginIdentifier (C++ member), [1], [2]

 	OfxPlugin::pluginVersionMajor (C++ member), [1], [2]

 	OfxPlugin::pluginVersionMinor (C++ member), [1], [2]

 	OfxPlugin::setHost (C++ member), [1], [2]

 	
 	OfxPointD (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxPointD::x (C++ member), [1], [2]

 	OfxPointD::y (C++ member), [1], [2]

 	OfxPointI (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxPointI::x (C++ member), [1], [2]

 	OfxPointI::y (C++ member), [1], [2]

 	OfxProgressSuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxProgressSuiteV1::progressEnd (C++ member), [1], [2], [3]

 	OfxProgressSuiteV1::progressStart (C++ member), [1], [2], [3]

 	OfxProgressSuiteV1::progressUpdate (C++ member), [1], [2], [3]

 	OfxProgressSuiteV2 (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxProgressSuiteV2::progressEnd (C++ member), [1], [2]

 	OfxProgressSuiteV2::progressStart (C++ member), [1], [2]

 	OfxProgressSuiteV2::progressUpdate (C++ member), [1], [2]

 	OfxPropertySetHandle (C++ type), [1], [2]

 	OfxPropertySuiteV1 (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxPropertySuiteV1::propGetDimension (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetDouble (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetDoubleN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetInt (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetIntN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetPointer (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetPointerN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetString (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propGetStringN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propReset (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetDouble (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetDoubleN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetInt (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetIntN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetPointer (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetPointerN (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetString (C++ member), [1], [2], [3]

 	OfxPropertySuiteV1::propSetStringN (C++ member), [1], [2], [3]

 	OfxRangeD (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRangeD::max (C++ member), [1], [2]

 	OfxRangeD::min (C++ member), [1], [2]

 	OfxRangeI (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRangeI::max (C++ member), [1], [2]

 	OfxRangeI::min (C++ member), [1], [2]

 	OfxRectD (C++ struct), [1], [2], [3]

 	(C++ type), [1]

 	OfxRectD::x1 (C++ member), [1], [2], [3]

 	OfxRectD::x2 (C++ member), [1], [2], [3]

 	OfxRectD::y1 (C++ member), [1], [2], [3]

 	OfxRectD::y2 (C++ member), [1], [2], [3]

 	OfxRectI (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRectI::x1 (C++ member), [1], [2]

 	OfxRectI::x2 (C++ member), [1], [2]

 	OfxRectI::y1 (C++ member), [1], [2]

 	OfxRectI::y2 (C++ member), [1], [2]

 	OfxRGBAColourB (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBAColourB::a (C++ member), [1], [2]

 	OfxRGBAColourB::b (C++ member), [1], [2]

 	OfxRGBAColourB::g (C++ member), [1], [2]

 	OfxRGBAColourB::r (C++ member), [1], [2]

 	OfxRGBAColourD (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBAColourD::a (C++ member), [1], [2]

 	OfxRGBAColourD::b (C++ member), [1], [2]

 	OfxRGBAColourD::g (C++ member), [1], [2]

 	OfxRGBAColourD::r (C++ member), [1], [2]

 	OfxRGBAColourF (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBAColourF::a (C++ member), [1], [2]

 	OfxRGBAColourF::b (C++ member), [1], [2]

 	OfxRGBAColourF::g (C++ member), [1], [2]

 	OfxRGBAColourF::r (C++ member), [1], [2]

 	OfxRGBAColourS (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBAColourS::a (C++ member), [1], [2]

 	OfxRGBAColourS::b (C++ member), [1], [2]

 	OfxRGBAColourS::g (C++ member), [1], [2]

 	OfxRGBAColourS::r (C++ member), [1], [2]

 	OfxRGBColourB (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBColourB::b (C++ member), [1], [2]

 	OfxRGBColourB::g (C++ member), [1], [2]

 	OfxRGBColourB::r (C++ member), [1], [2]

 	OfxRGBColourD (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBColourD::b (C++ member), [1], [2]

 	OfxRGBColourD::g (C++ member), [1], [2]

 	OfxRGBColourD::r (C++ member), [1], [2]

 	OfxRGBColourF (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBColourF::b (C++ member), [1], [2]

 	OfxRGBColourF::g (C++ member), [1], [2]

 	OfxRGBColourF::r (C++ member), [1], [2]

 	OfxRGBColourS (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxRGBColourS::b (C++ member), [1], [2]

 	OfxRGBColourS::g (C++ member), [1], [2]

 	OfxRGBColourS::r (C++ member), [1], [2]

 	OfxSetHost (C++ function), [1], [2]

 	OfxStandardColour (C++ enum), [1], [2]

 	(C++ type), [1]

 	OfxStandardColour::kOfxStandardColourOverlayActive (C++ enumerator), [1], [2]

 	OfxStandardColour::kOfxStandardColourOverlayBackground (C++ enumerator), [1], [2]

 	OfxStandardColour::kOfxStandardColourOverlayDeselected (C++ enumerator), [1], [2]

 	OfxStandardColour::kOfxStandardColourOverlayMarqueeBG (C++ enumerator), [1], [2]

 	OfxStandardColour::kOfxStandardColourOverlayMarqueeFG (C++ enumerator), [1], [2]

 	OfxStandardColour::kOfxStandardColourOverlaySelected (C++ enumerator), [1], [2]

 	OfxStandardColour::kOfxStandardColourOverlayText (C++ enumerator), [1], [2]

 	OfxStatus (C++ type), [1], [2]

 	OfxTime (C++ type), [1]

 	OfxTimeLineSuiteV1 (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxTimeLineSuiteV1::getTime (C++ member), [1], [2]

 	OfxTimeLineSuiteV1::getTimeBounds (C++ member), [1], [2]

 	OfxTimeLineSuiteV1::gotoTime (C++ member), [1], [2]

 	OfxYUVAColourB (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxYUVAColourB::a (C++ member), [1], [2]

 	OfxYUVAColourB::u (C++ member), [1], [2]

 	OfxYUVAColourB::v (C++ member), [1], [2]

 	OfxYUVAColourB::y (C++ member), [1], [2]

 	OfxYUVAColourF (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxYUVAColourF::a (C++ member), [1], [2]

 	OfxYUVAColourF::u (C++ member), [1], [2]

 	OfxYUVAColourF::v (C++ member), [1], [2]

 	OfxYUVAColourF::y (C++ member), [1], [2]

 	OfxYUVAColourS (C++ struct), [1], [2]

 	(C++ type), [1]

 	OfxYUVAColourS::a (C++ member), [1], [2]

 	OfxYUVAColourS::u (C++ member), [1], [2]

 	OfxYUVAColourS::v (C++ member), [1], [2]

 	OfxYUVAColourS::y (C++ member), [1], [2]

 This is a guide to the basic machinery an OFX plugin uses to communicate
with a host application, and goes into the fundamentals of the API.

An example plugin will be used to illustrate how all the machinery
works, and its source can be found in the C++ file
there [https://github.com/ofxa/openfx/blob/master/Guide/Code/Example1/basics.cpp].
This plugin is a no-op image
effect and does absolutely nothing to images, it is there purely to show
you the basics of how a host and plugin work together. I’ll embed
snippets of the plugin, but with some comments and debug code stripped
for clarity.

An OFX plugin is a compiled dynamic library that an application can load
on demand to add extra features to itself. A standardised API is used by
a host and a plugin to communicate and do what is needed.

OFX has an underlying plugin mechanism that could be used to create a
wide variety of plugin APIs, but currently only one has been layered on
top of the base plugin machinery, which is the OFX Image Effect API.

The OFX API is specified using the C programming language purely by
a set of header files, there are no libraries a plugin need to link
against to make a plugin or host work. [1]

Key Concepts and Terminology

OFX has several key concepts and quite specific terminology, which
definitely need defining.

	a host is an application than can load OFX plugins and
provides an environment for plugins to work in,

	a plugin provides a set of extra features to a host
application,

	a binary is a dynamic library [2] that contains one or more
plugins,

	a suite is C struct containing a set of function
pointers, which are named and versioned, Suites are the way a host
allows a plugin to call functions within it and not have to link
against anything,

	a property is a named object of a restricted set of C
types, which is accessed via a property suite,

	a property set is a collection of properties,

	an action is a call into a plugin to do something,

	an API is a collection of suites, actions and properties that
are used to do something useful, like process images. APIs are named
and versioned.

The Two Bootstrapper Functions

To tell the host what it has inside it, a plugin binary needs to expose
two functions to bootstrap the whole host/plugin communications process.
These are:

	OfxGetNumberOfPlugins() A function that returns the
number of plugins within that binary

	OfxGetPlugin() A function that returns a
struct that provides the information required by a host to
bootstrap the plugin.

The host should load the binary using the appropriate operating system
calls, then search it for these two exposed symbols. It should then
iterate over the number of advertised plugins and decide what to do with
the plugins it finds.

It should go without saying that a host should not hang onto the pointer
returned by OfxGetPlugin() after it unloads a binary, as the data will
not be valid. It should also copy any strings out of the struct if it
wants to keep them.

From our example, we have the following…

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L343]

// how many plugins do we have in this binary?
int OfxGetNumberOfPlugins(void)
{
 return 1;
}

// return the OfxPlugin struct for the nth plugin
OfxPlugin * OfxGetPlugin(int nth)
{
 if(nth == 0)
 return &effectPluginStruct;
 return 0;
}

The OfxPluginStruct

The OfxPlugin returned by OfxGetPlugin() provides
information about the implementation of a particular plugin.

The fields in the struct give the host enough information to uniquely
identify the plugin, what it does, and what version it is. These are:

	
	pluginAPI - the name of the API that this plugin satisfies,
	image effect plugins should set this to kOfxImageEffectPluginApi,

	apiVersion - the version of that API the plug-in was written
to

	pluginIdentifier - the unique name of the plug-in. Used only
to disambiguate the plug-in from all other plug-ins, not necessarily
for human eyes

	pluginVersionMajor - the major version of the plug-in,
typically incremented when compatibility breaks,

	pluginVersionMinor - the minor version of the plug-in,
typically incremented when bugs and so on are fixed,

	setHost - a function used to set the OfxHost struct in the
plugin,

	mainEntry - the function a host will use to send action
requests to the plugin.

Our example plugin’s OfxPlugin struct looks like…

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L326]

static OfxPlugin effectPluginStruct =
{
 kOfxImageEffectPluginApi,
 1,
 "org.openeffects:BasicsExamplePlugin",
 1,
 0,
 SetHostFunc,
 MainEntryPoint
};

Using this information a host application can grab a plugin struct then
figure out if it supports the API at the given version.

The pluginIdentifier is not meant to be the presented to the
user, it is a purely a unique id for that plugin, and any related
versions of that plugin. Use this for serialisation etc… to identify
the plugin. The domainname:pluginname nomenclature is suggested best
practice for a unique id. For a user visible name, use the
kOfxPropVersionLabel property

Plugin versioning allows a plugin (as identified by the
pluginIdentifier field) to be updated and redistributed multiple
times, with the host knowing which is the most appropriate version to
use. It even allows old and new versions of the same plugin to be used
simultaneously within a host application. There are more details on how
to use the version numbers in the OFX Programming Reference.

The setHost function is used by the host to give the plugin an
OfxHost struct (see below), which is the bit that gives the
plugin access to functions within the host application.

Finally the mainEntry is the function called by the host to get
the plugin to carry out actions. Via the property system it behaves as a
generic function call, allowing arbitrary numbers of parameters to be
passed to the plugin.

Suites

A suite is simply a struct with a set of function pointers. Each suite
is defined by a C struct definition in an OFX header file, as well a C
literal string that names the suite. A host will pass a set of suites to
a plugin, each suite having the set of function pointers filled
appropriately.

For example, look in the file ofxMemory.h [https://github.com/ofxa/openfx/blob/master/include/ofxMemory.h] for the suite used to perform
memory allocation:

ofxMemory.h [https://github.com/ofxa/openfx/blob/master/include/ofxMemory.h#L48]

	
struct OfxMemorySuiteV1

	The OFX suite that implements general purpose memory management.

Use this suite for ordinary memory management functions, where you would normally use malloc/free or new/delete on ordinary objects.

For images, you should use the memory allocation functions in the image effect suite, as many hosts have specific image memory pools.

Note

C++ plugin developers will need to redefine new and delete as skins ontop of this suite.

Public Members

	
OfxStatus (*memoryAlloc)(void *handle, size_t nBytes, void **allocatedData)

	Allocate memory.

	handle - effect instance to assosciate with this memory allocation, or NULL.

	nBytes - the number of bytes to allocate

	allocatedData - a pointer to the return value. Allocated memory will be alligned for any use.

This function has the host allocate memory using its own memory resources and returns that to the plugin.

	Return:

	
	kOfxStatOK the memory was sucessfully allocated

	kOfxStatErrMemory the request could not be met and no memory was allocated

	
OfxStatus (*memoryFree)(void *allocatedData)

	Frees memory.

	allocatedData - pointer to memory previously returned by OfxMemorySuiteV1::memoryAlloc

This function frees any memory that was previously allocated via OfxMemorySuiteV1::memoryAlloc.

	Return:

	
	kOfxStatOK the memory was sucessfully freed

	kOfxStatErrBadHandle allocatedData was not a valid pointer returned by OfxMemorySuiteV1::memoryAlloc

Notice also, the version number built into the name of the memory suite.
If we ever needed to change the memory suite for some reason,
OfxMemorySuiteV2 would be defined, with a new set of function
pointers. The new suite could then live along side the old suite to
provide backwards compatibility.

Plugins have to ask for suites from the host by name with a specific
version, how we do that is covered next.

The OfxHost and Fetching Suites

An instance of an OfxHost C struct is the thing that allows a
plugin to get suites and provides information about a host application

A plugin is given one of these by the host application via the
OfxPlugin::setHost() function it previously passed to the host.

There are two members to an OfxHost, the first is a property set
(more on properties in a moment) which describes what the host does and
how it behaves.

The second member is a function used to fetch suites from the host
application. Going back to our example plugin, we have the following
bits of code. For the moment ignore how and when the LoadAction is
called, but notice what it does…

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L99]

// The anonymous namespace is used to hide symbols from export.
namespace {
 OfxHost *gHost;
 OfxPropertySuiteV1 *gPropertySuite = 0;
 OfxImageEffectSuiteV1 *gImageEffectSuite = 0;

 //
 /// call back passed to the host in the OfxPlugin struct to set our host pointer
 void SetHostFunc(OfxHost *hostStruct)
 {
 gHost = hostStruct;
 }

 //
 /// the first action called
 OfxStatus LoadAction(void)
 {
 gPropertySuite = (OfxPropertySuiteV1 *) gHost->fetchSuite(gHost->host,
 kOfxPropertySuite,
 1);
 gImageEffectSuite = (OfxImageEffectSuiteV1 *) gHost->fetchSuite(gHost->host,
 kOfxImageEffectSuite,
 1);

 return kOfxStatOK;
 }

}

Notice that it is fetching two suites by name from the host. Firstly the
all important kOfxPropertySuite and then the kOfxImageEffectSuite. It
squirrels these away for later use in two global pointers. The plugin
can then use the functions in the suites as and when needed.

Properties

The main way plugins and hosts communicate is via the properties
mechanism. A property is a named object inside a property set, which is
a bit like a python dictionary. You use the property suite, defined in
the header ofxProperty.h to access them.

Properties can be of the following fundamental types…

	int

	double

	char *

	void *

So for in our example we have….

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L160]

OfxPropertySetHandle effectProps;
gImageEffectSuite->getPropertySet(effect, &effectProps);

gPropertySuite->propSetString(effectProps, kOfxPropLabel, 0, "OFX Basics Example");

Here the plugin is using the effect suite to get the property set on the
effect. It is then setting the string property kOfxPropLabel to
be “OFX Basics Example”. There are corresponding calls for the other
data types, and equivalent set calls. All pretty straight forwards.

Notice the 0 passed as the third argument, which is an index.
Properties can be multidimensional, for example the current pen position
in a graphics viewport is a 2D integer property. You can get and set
individual elements in a multidimensional property or you could use
calls like OfxPropertySuiteV1::propSetIntN to set all values at
once. Of course there exists N calls for all types, as well as
corresponding setting calls.

The various OFX header files are littered with C macros that define the
properties used by the API, what type they are, what property set they
are on and whether you can read and/or write them. The OFX reference
guide had all the properties listed by name and object they are on, as
well as what they are for.

By passing information via property sets, rather than fixed C structs,
you gain a flexibility that allows for simple incremental additions to
the API without breaking backwards compatibility and builds. It does
come at a cost (being continual string look-up), but the flexibility it
gives is worth it.

Note

Plugins have to be very careful with scope of the pointer returned
when you fetch a string property. The pointer will be guaranteed to
be valid only until the next call to an OFX suite function or
until the action ends. If you want to use the string out of those
scope you must copy it.

Actions

Actions are how a host tells a plugin what to do. The mainEntry
function pointer in the OfxPlugin structure is the what accepts
actions to do whatever is being requested.

Where:

	action is a C string that specifies what is to be done by the
plugin, e.g. OfxImageEffectActionRender tells an image effect
plugin to render a frame

	handle is the thing that is being operated on, and needs to be
downcast appropriately, what this is will depend on the action

	inArgs is a well defined property set that are the arguments to
the action

	outArgs is a well defined property set where a plugin can return
values as needed.

The entry point will return an OfxStatus to tell the host what
happened. A plugin is not obliged to trap all actions, just a certain
subset, and if it doesn’t need to trap the action, it can just return
the status kOfxStatReplyDefault to have the host carry out the
well defined default for that action.

So looking at our example we can see its main entry point:

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L259]

OfxStatus MainEntryPoint(const char *action,
 const void *handle,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
{
 // cast to appropriate type
 OfxImageEffectHandle effect = (OfxImageEffectHandle) handle;

 OfxStatus returnStatus = kOfxStatReplyDefault;

 if(strcmp(action, kOfxActionLoad) == 0) {
 returnStatus = LoadAction();
 }
 else if(strcmp(action, kOfxActionUnload) == 0) {
 returnStatus = UnloadAction();
 }
 else if(strcmp(action, kOfxActionDescribe) == 0) {
 returnStatus = DescribeAction(effect);
 }
 else if(strcmp(action, kOfxImageEffectActionDescribeInContext) == 0) {
 returnStatus = DescribeInContextAction(effect, inArgs);
 }
 else if(strcmp(action, kOfxActionCreateInstance) == 0) {
 returnStatus = CreateInstanceAction(effect);
 }
 else if(strcmp(action, kOfxActionDestroyInstance) == 0) {
 returnStatus = DestroyInstanceAction(effect);
 }
 else if(strcmp(action, kOfxImageEffectActionIsIdentity) == 0) {
 returnStatus = IsIdentityAction(effect, inArgs, outArgs);
 }

 return returnStatus;
}

You can see the plugin is trapping seven actions and is saying to do the
default for the rest of the actions.

	In fact only four actions need to be trapped for an image effect plugin
	[3], but our machinery plugin is trapping more for illustrative

purposes.

What is on the property sets, and what the handle is depends on the
action being called. Some actions have no arguments (eg: the
kOfxLoadAction), while others have in and out arguments, e.g. the
kOfxImageEffectActionIsIdentity.

Actions give us a very flexible and expandable generic function calling
mechanism. This means it is trivial to expand the API via adding extra
properties or actions to the API without impacting existing plugins or
applications.

Note

For the main entry point on image effect plugins, the handle passed
in will either be NULL or an OfxImageEffectHandle, which is
just a blind pointer to host specific data that represents the
plugin.

Basic Actions For Image Effect Plugins

There are a set of actions called on a plugin that signal to the plugin
what is going on and to get it to tell the host what the plugin does.
These need to be called in a specific sequence to make it all work
properly.

The Load and Unload Actions

The kOfxActionLoad is the very first action passed to a plugin. It will
be called after the setHost callback has been used to pass the
OfxHost to the plugin. It is the point at which a plugin gets to
create global structures that it will later be used across all
instances. From our load action snippet above,
you can see that the plugin is fetching two suites and caching the
pointers away for later use.

At some point the host application will want to unload the binary that
the plugin is contained in, either when the host quits or the plugin is
no longer needed by the host application. The host needs to notify the
plugin of this, as it may need to perform some clean up. The
kOfxActionUnload action is sent to the plugin by the host to warn the
plugin of it’s imminent demise. After this action is called the host can
no longer issue any actions to that plugin unless another kOfxActionLoad
action is called. In our example plugin, the unload does nothing.

Note

Hosts should always pair the kOfxActionLoad with a kOfxActionUnload,
otherwise all sorts of badness can happen, including memory leaks,
failing license checks and more. There is one exception to this,
which is if a plugin encounters an error during the load action and
returns an error state. In this case only, the plugin must clean
up before it returns, and , the balancing unload action is not
called. In all other circumstances where an error is returned by a
plugin from any other action, the unload action will eventually be
called.

Describing Plugins To A Host

Once a plugin has had kOfxActionLoad called on it, it will be asked to
describe itself. This is done with the kOfxActionDescribe action. From
our example plugin, here is the function called by our main entry point
in response to the describe action.

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L149]

OfxStatus DescribeAction(OfxImageEffectHandle descriptor)
{
 // get the property set handle for the plugin
 OfxPropertySetHandle effectProps;
 gImageEffectSuite->getPropertySet(descriptor, &effectProps);

 // set some labels and the group it belongs to
 gPropertySuite->propSetString(effectProps,
 kOfxPropLabel,
 0,
 "OFX Basics Example");
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPluginPropGrouping,
 0,
 "OFX Example");

 // define the image effects contexts we can be used in, in this case a simple filter
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedContexts,
 0,
 kOfxImageEffectContextFilter);

 return kOfxStatOK;
}

You will see that it fetches a property set (via the image effect suite)
and sets various properties on it. Specifically the label used in any
user interface to name the plugin, and the group of plugins it belongs
to. The grouping name allows a developer to ask the host to arrange all
plugins with that group name into a single menu/container in the user
interface.

The final thing it sets is the single context it can be used in.
Contexts are specific to image effect plugins, and they are there
because a plugin can be used in many different ways. We call each way an
image effect plugin can be used a context. In our example we are saying
our plugin can behave as a filter only. A filter is simply an effect
with one and only one input clip and one mandated output clip. This is
typical of systems such as editors which can drop effects directly onto
a clip in a time-line. For more complex systems, e.g. a node graph
compositor, you might want to allow the same plugin to have more input
clips and a richer parameter set, which we call the general context. A
plugin can work one or more contexts, not all of which need be supported
by a host.

Because it can be used in different contexts, and will need to be
described differently in each, an image effect plugin has a two tier
description process. First kOfxActionDescribe is called to set
attributes common to all the contexts the plugin can be used in, then
the kOfxImageEffectActionDescribeInContext action is called, once for
each context that the host wants to use the effect in.

Again from our example plugin, here is how it responds to the describe
in context action…

Note

A plugin developer might package multiple plugins in a single binary
and another multiple plugins into multiple binaries yet both expect
them to show up in the same plugin group [4] in the user
interface.

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L171]

OfxStatus
DescribeInContextAction(OfxImageEffectHandle descriptor, OfxPropertySetHandle inArgs)
{
 // check state
 ERROR_ABORT_IF(gDescribeCalled == false, "DescribeInContextAction called before DescribeAction");
 gDescribeInContextCalled = true;

 // get the context from the inArgs handle
 char *context;
 gPropertySuite->propGetString(inArgs, kOfxImageEffectPropContext, 0, &context);

 ERROR_IF(strcmp(context, kOfxImageEffectContextFilter) != 0, "DescribeInContextAction called on unsupported contex %s", context);

 OfxPropertySetHandle props;
 // define the mandated single output clip
 gImageEffectSuite->clipDefine(descriptor, "Output", &props);

 // set the component types we can handle on out output
 gPropertySuite->propSetString(props, kOfxImageEffectPropSupportedComponents, 0, kOfxImageComponentRGBA);
 gPropertySuite->propSetString(props, kOfxImageEffectPropSupportedComponents, 1, kOfxImageComponentAlpha);

 // define the mandated single source clip
 gImageEffectSuite->clipDefine(descriptor, "Source", &props);

 // set the component types we can handle on our main input
 gPropertySuite->propSetString(props, kOfxImageEffectPropSupportedComponents, 0, kOfxImageComponentRGBA);
 gPropertySuite->propSetString(props, kOfxImageEffectPropSupportedComponents, 1, kOfxImageComponentAlpha);

 return kOfxStatOK;
}

In this case I’ve left the error check cluttering up the snippet so you
can see how the inArgs property set is used to specify which context
is currently being described. Our example then goes on define two image
clips, the first used for output, and the second used for input. The API
docs specify that a filter effect needs to specify both of these with
exactly those names. Not also how the effect is setting a
multidimensional property associated with each clip to specify what
pixel types it supports on those clips.

For more complex effects, these actions are the point where you specify
parameters that the effect wants to use, and get to tweak a whole range
of settings to say how the plugin behaves.

Creating Instances

So far a host knows what our plugin looks like and how it should behave,
but it isn’t using it to process pixels yet. At some point a user will
click on a button in a UI and to say they want to use the plugin. To do
that a host creates an instance of the plugin. An instance represents
a unique copy of the plugin and contains all the state needed for that.
For example, a blur plugin may be instantiated many times in a
compositing graph, each instance will have parameters set to a different
value, and be connected to different input and output clips.

A plugin developer may need to attach data to each plugin instance,
typically to tie the plugin into their own image processing
infrastructure. They get the chance to do that via the
kOfxActionCreateInstance action. The host will call that action just
after they have created and initialised their host-side data structures
that represent the plugin. Our example plugin doesn’t actually do
anything on create instance, but it could choose to attached it’s own
data structures to the instance via the kOfxPropInstanceData
property.

A plugin will also want to destroy any of its own data structures when
an instance is destroyed. It gets to do that in the
kOfxActionDestroyInstance action.

Our example plugin exercises both of those action just to illustrate
what is going it. It simply places a string into the instance data
property which it later fetches and destroys. In real plugins, this is
typically a hook to deeper plugin side data structures.

Note

Because a host might have asynchronous UI handling and multiple
render threads on the same instance, it is suggested that a plugin
that wants to write to the instance data after instance creation do
so in a safe manner (e.g. by semaphore lock).

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L202]

OfxStatus CreateInstanceAction(OfxImageEffectHandle instance)
{
 OfxPropertySetHandle effectProps;
 gImageEffectSuite->getPropertySet(instance, &effectProps);

 // attach some instance data to the effect handle, it can be anything
 char *myString = strdup("This is random instance data that could be anything you want.");

 // set my private instance data
 gPropertySuite->propSetPointer(effectProps,
 kOfxPropInstanceData,
 0,
 (void *) myString);

 return kOfxStatOK;
}

// instance destruction
OfxStatus DestroyInstanceAction(OfxImageEffectHandle instance)
{
 OfxPropertySetHandle effectProps;
 gImageEffectSuite->getPropertySet(instance, &effectProps);

 // get my private instance data
 char *myString = NULL;
 gPropertySuite->propGetPointer(effectProps,
 kOfxPropInstanceData,
 0,
 (void **) &myString);
 ERROR_ABORT_IF(myString == NULL, "Instance data should not be null!");
 free(myString);

 return kOfxStatOK;
}

Note

kOfxActionDestroyInstance should always be called when an instance
is destroyed, and furthermore all instances need to have had
kOfxActionDestroyInstance called on them before kOfxActionUnload can
be called.

What About The Image Processing?

This plugin is pretty much a hello world OFX example, it doesn’t
actually process any images. Normally a host application would call the
kOfxImageEffectActionRender action when it wants the plugin to
render a frame. Our simple plugin gets around processing any images by
trapping the kOfxImageEffectActionIsIdentity action. This action
lets the plugin tell the host application that it currently does nothing
to its inputs, for example a blur effect with the blur size of zero. In
such a case the host can simply ignore the plugin and use its source
images directly. And here is the code that does that:

basics.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example1/basics.cpp#L238]

OfxStatus IsIdentityAction(OfxImageEffectHandle instance,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
{
 // we set the name of the input clip to pull data from
 gPropertySuite->propSetString(outArgs, kOfxPropName, 0, "Source");
 return kOfxStatOK;
}

The plugin is telling the host to pass through an unprocessed image from
an input clip, and because plugins can have more than one input it needs
to tell the host which clip to use. It does that by setting the
kOfxPropName property on the outargs. It also returns
kOfxStatOK to indicate that it has trapped the action and that
the plugin is currently doing nothing.

Remember we said that each action has a well defined set of in and out
arguments? In the case of the is identity action these are…

	kOfxPropTime - the time at which to test for identity

	kOfxImageEffectPropFieldToRender - the field to test for identity

	kOfxImageEffectPropRenderWindow - the window to test for identity
under

	kOfxImageEffectPropRenderScale - the scale factor being applied to
the images being rendered

	kOfxPropName this to the name of the clip that should be used if the
effect is an identity transform, defaults to the empty string

	kOfxPropTime the time to use from the indicated source clip as an
identity image (allowing time slips to happen), defaults to the value
in kOfxPropTime in inArgs

A proper plugin would examine the inArgs, its parameters and see if it
is doing anything to its inputs. If it does need to process images it
would return kOfxStatReplyDefault rather than
kOfxStatOK.

Life Cycle of a Plugin

Now we’ve outlined the basic actions and functions in a plugin, we
should clearly specify the calling sequence. Failure to call them in the
right sequence will lead to all sorts of undefined behaviour.

Assuming the host has done nothing apart from load the dynamic library
that contains plugins and has found the two boostrapping
symbols in the plugin, the host
should then…

	call OfxGetNumberOfPlugins to discover the number of plugins

	call OfxGetPlugin for each of the N plugins in the binary and
decide if it can use them or not (by looking at APIs and versions)

At this point the code in the binary should have done nothing apart from
run those two functions. The host is free to unload the binary at this
point without further interaction with the plugin.

If the host decides it wants to use one of the plugins in the binary it
must then…

	call the setHost function given to it for that plugin and pass
back an OfxHost struct which allows plugins to fetch suites
appropriate for the API

	call the kOfxActionLoad

	call kOfxActionDescribe

	call kOfxImageEffectActionDescribeInContext for each context

If the host wants to actually use a plugin, it creates whatever host
side data structures are needed then…

	calls kOfxActionCreateInstance

When a host wants to get rid of an instance, before it destroys any of
it’s own data structures it calls kOfxActionDestroyInstance

When the host wants to be done with the plugin, and before it
dynamically unloads the binary it calls kOfxActionUnload, all
instances must have been destroyed before this call.

Once the final kOfxActionUnload has been called, even if it doesn’t
dynamically unload the binary, the host can no longer call the main
entry point on that specific plugin until it once more calls
kOfxActionLoad.

Packaging A Plugin

The compiled code for a plugin is contained in a dynamic library.
Plugins are distributed as a directory structure that allows you to add
icons and other resources you may need. There is more detailed
information in the OFX Programming Reference Guide.

Summary

This example has shown you the basics of the OFX plugin machinery, the
main things it illustrated was…

	the two bootstrapper functions
exposed by a plugin that start the plugin discovery process,

	the main entry point of a plugin is given actions by
the host application to do things,

	the plugin gets suites from the host to gain access to
functions in the host,

	property sets are the main way of passing data back
and forth across the API,

	image effect plugins are described in a two step process,

	instances are created when a host wants to
use a plugin to do something

	actions must be called in a certain
order for the API to work cleanly.

[1]
Though there exist optional host and plugin support libraries that
can be used to help you in your coding.

[2]
which will be operating system specific

[3]
kOfxLoadAction, kOfxActionDescribe,
kOfxImageEffectActionDescribeInContext and one of

kOfxImageEffectActionIsIdentity or kOfxImageEffectActionRender

[4]
as specified by kOfxImageEffectPluginPropGrouping

 This guide will take you through the fundamentals of processing images
in OFX. An example plugin will be used to illustrate how it all works
and its source can be found in the C++ file
invert.cpp [https://github.com/ofxa/openfx/blob/master/Guide/Code/Example2/invert.cpp].
This plugin takes an image and
inverts it (or rather calculates the complement of each component).
Ideally you should have read the guide to the basic machinery of an OFX
plugin before you read this guide.

Action Stations!

The invert example is pretty much the most minimal OFX plugin you can
write that processes images. It leaves many things at their default
settings which means it doesn’t have to trap more than four actions in
total [1] and set very few switches.

From the source, here is the main entry routine that traps those
actions…

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L416]

 //
 // The main entry point function, the host calls this to get the plugin to do things.
 OfxStatus MainEntryPoint(const char *action,
 const void *handle,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
 {
 // cast to appropriate type
 OfxImageEffectHandle effect = (OfxImageEffectHandle) handle;

 OfxStatus returnStatus = kOfxStatReplyDefault;

 if(strcmp(action, kOfxActionLoad) == 0) {
 // The very first action called on a plugin.
 returnStatus = LoadAction();
 }
 else if(strcmp(action, kOfxActionDescribe) == 0) {
 // the first action called to describe what the plugin does
 returnStatus = DescribeAction(effect);
 }
 else if(strcmp(action, kOfxImageEffectActionDescribeInContext) == 0) {
 // the second action called to describe what the plugin does
 returnStatus = DescribeInContextAction(effect, inArgs);
 }
 else if(strcmp(action, kOfxImageEffectActionRender) == 0) {
 // action called to render a frame
 returnStatus = RenderAction(effect, inArgs, outArgs);
 }

 /// other actions to take the default value
 return returnStatus;
 }

} // end of anonymous namespace

It leaves out some of the actions we had in the last example, which were
there for only illustrative purposes only. However, it is now trapping
one more, the kOfxImageEffectActionRender action. Funnily
enough, that is the action called to render a frame of output.

Describing Our Plugin

We have the standard two step description process for this plugin.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L117]

//
// the plugin's basic description routine
OfxStatus DescribeAction(OfxImageEffectHandle descriptor)
{
 // set some labels and the group it belongs to
 gPropertySuite->propSetString(effectProps,
 kOfxPropLabel,
 0,
 "OFX Invert Example");
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPluginPropGrouping,
 0,
 "OFX Example");

 // define the image effects contexts we can be used in, in this case a simple filter
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedContexts,
 0,
 kOfxImageEffectContextFilter);

 // set the bit depths the plugin can handle
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedPixelDepths,
 0,
 kOfxBitDepthFloat);
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedPixelDepths,
 1,
 kOfxBitDepthShort);
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedPixelDepths,
 2,
 kOfxBitDepthByte);

 // get the property set handle for the plugin
 OfxPropertySetHandle effectProps;
 gImageEffectSuite->getPropertySet(descriptor, &effectProps);

 // say that a single instance of this plugin can be rendered in multiple threads
 gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPluginRenderThreadSafety,
 0,
 kOfxImageEffectRenderFullySafe);

 // say that the host should manage SMP threading over a single frame
 gPropertySuite->propSetInt(effectProps,
 kOfxImageEffectPluginPropHostFrameThreading,
 0,
 1);

 return kOfxStatOK;
}

The function called for the describe action sets all the properties on
an effect that are independent of specific contexts. In this case it
sets some labels and says what contexts it can be used in, which is only
the filter context, where an effect has a single input and output.
It also says what data types it can support when processing images. This
is a property that belongs to the plugin as a whole, not to individual
clips (see below). If a plugin doesn’t support a data type needed by the
host, the host is at liberty to ignore it and get on with it’s life.

We said our plugin supports all the three standard pixel data types,
which various properties throughout the API use. The values are:

	kOfxBitDepthByte Each component will be an 8 bit unsigned integer with a maximum value of 255.

	kOfxBitDepthShort Each component will be an 16 bit unsigned integer with a maximum value of 65535.

	kOfxBitDepthFloat Each component will be a 32 bit floating point number with a nominal white point of 1.

Note

The OfxImageEffectHandle passed to the describe calls should not
be cached away, It only represents some object used while describing
the effect. It is not the effect itself and when instances are
created the handle will refer to a different object entirely. In
general, never hang onto any effect handles in any global state.

Finally our plugin is setting some flags to do with multithreaded
rendering. The first flag, kOfxImageEffectPluginRenderThreadSafety
is used to indicate how plugins and instances should be used when
rendering in multiple threads. We are setting it to
kOfxImageEffectRenderFullySafe, which means that the host can have
any number of instances rendering and each instance could have possibly
have simultaneous renders called on it. (eg: at separate frames). The
other options are listed in the programming reference.

The second call sets the
kOfxImageEffectPluginPropHostFrameThreading, which says that the
host should manage any symmetric multiprocessing when rendering the
effect. Typically done by calling render on different tiles of the
output image. If not set, it is up to the plugin to launch the
appropriate number of threads and divide the processing appropriately
across them.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L171]

//
// describe the plugin in context
OfxStatus
DescribeInContextAction(OfxImageEffectHandle descriptor,
 OfxPropertySetHandle inArgs)
{
 OfxPropertySetHandle props;
 // define the mandated single output clip
 gImageEffectSuite->clipDefine(descriptor, "Output", &props);

 // set the component types we can handle on out output
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 0,
 kOfxImageComponentRGBA);
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 1,
 kOfxImageComponentAlpha);
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 2,
 kOfxImageComponentRGB);

 // define the mandated single source clip
 gImageEffectSuite->clipDefine(descriptor, "Source", &props);

 // set the component types we can handle on our main input
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 0,
 kOfxImageComponentRGBA);
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 1,
 kOfxImageComponentAlpha);
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 2,
 kOfxImageComponentRGB);

 return kOfxStatOK;
}

Here we are describing the plugin when it is being used as a filter. In
this case we are describing two clips, the mandated Source and
Output clips. Each clip has a variety of properties on them, in this
case we are only setting what pixel components we accept on those
inputs. The components supported (unlike the data type) is a per clip
thinumgy. Pixels in OFX can currently only be of three types, which are
listed below.

kOfxImageComponentRGBA Each pixel has four samples, corresponding to Red, Green, Blue and Alpha. Packed as RGBA

kOfxImageComponentRGB Each pixel has three samples, corresponding to Red, Green and Blue. Packed as RGB.

kOfxImageComponentAlpha Each pixel has one sample, generally interpreted as an Alpha value.

Note

The OpenGL rendering extension has significantly different set of
capabilities for this.

Clips

I hear you ask “What are these clips of which you speak Mr Nicoletti?”,
well they are a sequence of images that vary over time. They are
represented in the API by an OfxImageClipHandle and have a name
plus an associated property set.

Depending on the context, you will have to describe some mandated number
of clips with specific names. For example the filter effect has two and
only two clips you must describe Source and Output, a transition
effect has three and only three clips SourceFrom, SourceTo and
Output while a general effect has to have one clip called Output
but as many other input clips as we want. There are **#defines** for
these in the various OFX header files. The Programming Reference has
more information on other contexts, and we will use more in later
examples.

There are many properties on a clip, and during description you get to
set a whole raft of them as to how you want them to behave. We are
relying on the defaults in this example that allow us to avoid issues
like field rendering and more.

You fetch images out of clips with a function call in the image effect
suite, where you ask for an image at a specific frame. In all cases the
clip named “Output” is the one that will give you the images you will be
writing to, the other clips are always sources and you should not modify
the data in them.

Images In OFX

Before I start talking over the rendering in the example plugin, I
should tell you about images in OFX.

Images and the Image Plane

Images are contiguous rectangular regions of a nominally infinite 2D
image plane for which the host has data samples, in the form of
pixels [http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf].

[image: An image on the infinite image plane]

The figure above shows our image spanning the plane from coordinates X1
to X2 in the X dimension and Y1 to Y2 in the Y dimension. We call these
four numbers the image’s bounds, and is the region an image is
guaranteed to have addressable data for.

Note

Y goes up in OFX land, not down as is common in desktop
publishing.

Note

That the image bound is open on the right, so iteration is
for (int x = x1; x < x2; ++x). This means the number of pixels
in the X dimension is given by X2-X1, similarly for the Y dimension.

Image Data

Images are made up of chunk of memory which is interpreted to be a 2D
array of pixels. Each pixel in an image has exactly the same number of
components, each component being of exactly the same data type.
OFX currently has pixels with one (A), three (RGB) or four components
(RGBA), which can be bytes, shorts, or a 32 bit floats.

[image: Image Data Layout]

The figure above shows a small (3x4) image containing RGBA pixels. OFX
returns a void * data pointer to the first component of the bottom
left pixel in the image, which will be at (X1, Y1) on the image plane.
Memory addresses increase left to right across the row of an OFX image,
with all components and pixels hard packed and contiguous within that
row.

Rows may or may not be contiguous in memory, so in our example the
address of component R at row 1 column 0, may or may not come
directly after component A at (2, 0). To manage this we use “row
bytes”, which are the byte offset between rows, (not pixel or
component offsets). By breaking this offset out, hosts can more easily
map their pixel data into OFX images without having to copy. For example
a host that natively runs with Y down and packs images with the top row
first in memory would use negative row bytes and have the data pointer
point to it’s last row (which is the bottom row).

Pixel Address Calculation

So, given a coordinate on the image plane how do you calculate the
address of a pixel in the image? Well you use the following information:

	a void* pointer to the bottom left corner of the image

	four integers that define the bounds of the image for which there
is data

	the data type of each component

	the type of each pixel (which yields the number of components per
pixel)

	the number of bytes that is the offset between rows

The code snippet below shows you how to use all that to find the address
of a pixel whose coordinates are on the image plane.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L216]

// Look up a pixel in the image. returns null if the pixel was not
// in the bounds of the image
template <class T>
static inline T * pixelAddress(int x, int y,
 void *baseAddress,
 OfxRectI bounds,
 int rowBytes,
 int nCompsPerPixel)
{
 // Inside the bounds of this image?
 if(x < bounds.x1 || x >= bounds.x2 || y < bounds.y1 || y >= bounds.y2)
 return NULL;

 // turn image plane coordinates into offsets from the bottom left
 int yOffset = y - bounds.y1;
 int xOffset = x - bounds.x1;

 // Find the start of our row, using byte arithmetic
 void *rowStartAsVoid = reinterpret_cast<char *>(baseAddress) + yOffset * rowBytes;

 // turn the row start into a pointer to our data type
 T *rowStart = reinterpret_cast<T *>(rowStartAsVoid);

 // finally find the position of the first component of column
 return rowStart + (xOffset * nCompsPerPixel);
}

You will notice it is a templated function, where T will be
instantiated with the appropriate component type by other code.
T will be one of unsigned char, unsigned short
or float.

In order the function…

	checks if the pixel coordinate is within the bounds of the image. If
it is not then we have no addressable pixel data at the point, so the
function gives up and return NULL as an indication of that,

	as we have x and y as coordinates on the image
plane, it then turn the coordinates into offsets from the bottom
left of the image with a simple subtraction,

	it then finds the start of the row we are interested in by scaling
our local y offset by rowBytes to figure the offset from our
base address data pointer, in bytes. It adds that to the base
address and now has the start of our row.

	it turns the raw address at the start of the row into a pointer of
our data type,

	finally it offsets to the correct column by skippying over xLocal
number of pixels, each of each which contain nComponents.

Images Are Property Sets

Images are property sets, you access all the data needed via the
standard OFX property mechanism. This has allowed us to expand the
information in an image and be 100% backwards compatible to existing
hosts and plugins.

Anyway, here is code from our example using the property mechanism to
get the required data from an image…

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L242]

 template <class T, int MAX>
 void PixelProcessing(OfxImageEffectHandle instance,
 OfxPropertySetHandle sourceImg,
 OfxPropertySetHandle outputImg,
 OfxRectI renderWindow,
 int nComps)
 {
...
 // fetch output image info from the property handle
 int dstRowBytes;
 OfxRectI dstBounds;
 void *dstPtr = NULL;
 gPropertySuite->propGetInt(outputImg, kOfxImagePropRowBytes, 0, &dstRowBytes);
 gPropertySuite->propGetIntN(outputImg, kOfxImagePropBounds, 4, &dstBounds.x1);
 gPropertySuite->propGetPointer(outputImg, kOfxImagePropData, 0, &dstPtr);

...
 }

 OfxStatus RenderAction(OfxImageEffectHandle instance,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
 {
...
 // figure out the component type
 char *cstr;
 gPropertySuite->propGetString(outputImg, kOfxImageEffectPropComponents, 0, &cstr);
 std::string components = cstr;

...
 // figure out the data types
 gPropertySuite->propGetString(outputImg, kOfxImageEffectPropPixelDepth, 0, &cstr);
 std::string dataType = cstr;
...
}

There are many more properties in an image, but we won’t need them for
this simple example and they’ll be covered in other tutorials.

The Render Action

As stated above, the render action is the one used to get a plugin to
actually process images. I’ll go through it in stages rather than have
one big listing.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L310]

//
// Render an output image
OfxStatus RenderAction(OfxImageEffectHandle instance,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
{
 // get the render window and the time from the inArgs
 OfxTime time;
 OfxRectI renderWindow;
 OfxStatus status = kOfxStatOK;

 gPropertySuite->propGetDouble(inArgs, kOfxPropTime, 0, &time);
 gPropertySuite->propGetIntN(inArgs, kOfxImageEffectPropRenderWindow, 4, &renderWindow.x1);

This first listing shows how the inArgs are being used to say what
exactly to render. The property kOfxPropTime on inArgs is
the frame of the output clip to render. The property
kOfxImageEffectPropRenderWindow is the region that should be
written to.

The output image (which will be fetched later on) will have a bounds
that are at least as big as the render window. The bounds of the output
image could in fact be larger. This could happen if a host is
simultaneously calling the render action in separate threads to perform
symmetric multi-processing, each thread would be given a different
render window to fill in of the larger output image.

Note

A plugin can have multiple actions being simultaneously in separate
threads, especially the render action. Do not rely on any local
state if you can help it. You can control how threading works in the
describe actions.

Note

To allow a plugin to be called in an SMP manner, or have multiple
instances simultaneously rendering, the API has been designed so
that the plugin does not rely on any implicit state, such as time,
everything is explicit.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L323]

// fetch output clip
OfxImageClipHandle outputClip;
gImageEffectSuite->clipGetHandle(instance, "Output", &outputClip, NULL);

// fetch main input clip
OfxImageClipHandle sourceClip;
gImageEffectSuite->clipGetHandle(instance, "Source", &sourceClip, NULL);

This next snippet fetches two clip handles by name from the instance,
using the image effect suite. [2]

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L331]

// the property sets holding our images
OfxPropertySetHandle outputImg = NULL, sourceImg = NULL;
try {
 // fetch image to render into from that clip
 OfxPropertySetHandle outputImg;
 if(gImageEffectSuite->clipGetImage(outputClip, time, NULL, &outputImg) != kOfxStatOK) {
 throw " no output image!";
 }

 // fetch image at render time from that clip
 if (gImageEffectSuite->clipGetImage(sourceClip, time, NULL, &sourceImg) != kOfxStatOK) {
 throw " no source image!";
 }

We now (inside a try/catch block) fetch two images from the clips, again
using the image effect suite. Note we are asking for images at the frame
we were told to render. Effects that need images from other frames can
pass in different values to OfxImageEffectSuiteV1::clipGetImage(), but will need to trap
more actions than we have to make that all work correctly.

We will be given back two property set handles which represent our
images. If the call failed (which could be for a variety of good
reasons) we give up with a throw.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L345]

// figure out the data types
char *cstr;
gPropertySuite->propGetString(outputImg, kOfxImageEffectPropComponents, 0, &cstr);
std::string components = cstr;

// how many components per pixel?
int nComps = 0;
if(components == kOfxImageComponentRGBA) {
 nComps = 4;
}
else if(components == kOfxImageComponentRGB) {
 nComps = 3;
}
else if(components == kOfxImageComponentAlpha) {
 nComps = 1;
}
else {
 throw " bad pixel type!";
}

Now we want to know what’s inside our image’s pixels, so we can
correctly process it. We ask what components are present in the output
image. Because we have left certain settings at the default, the source
and output images will always have the same number of components and the
same data types. Which is why we aren’t checking for the source for its
pixel information.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L365]

// now do our render depending on the data type
gPropertySuite->propGetString(outputImg, kOfxImageEffectPropPixelDepth, 0, &cstr);
std::string dataType = cstr;

if(dataType == kOfxBitDepthByte) {
 PixelProcessing<unsigned char, 255>(instance, sourceImg, outputImg, renderWindow, nComps);
}
else if(dataType == kOfxBitDepthShort) {
 PixelProcessing<unsigned short, 65535>(instance, sourceImg, outputImg, renderWindow, nComps);
}
else if (dataType == kOfxBitDepthFloat) {
 PixelProcessing<float, 1>(instance, sourceImg, outputImg, renderWindow, nComps);
}
else {
 throw " bad data type!";
 throw 1;
}

Now we are enquiring as to what C type the components our image will be.
Again throwing if something has gone wrong. We use the data type to
correctly instantiate our templated function which will do the grunt
work of iterating over pixels. Note also that it is passing the nominal
maximum value of the data type as a template argument.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L383]

 }
 catch(const char *errStr) {
 bool isAborting = gImageEffectSuite->abort(instance);

 // if we were interrupted, the failed fetch is fine, just return kOfxStatOK
 // otherwise, something weird happened
 if(!isAborting) {
 status = kOfxStatFailed;
 }
 ERROR_IF(!isAborting, " Rendering failed because %s", errStr);

 }

 if(sourceImg)
 gImageEffectSuite->clipReleaseImage(sourceImg);
 if(outputImg)
 gImageEffectSuite->clipReleaseImage(outputImg);

 // all was well
 return status;
}

This last bit is basically clean up. We have the catch for our
try/catch block. The first thing it does is ask the host application is
the effect being told to stop by calling the OfxImageEffectSuiteV1::abort() function on
the effect suite. We might have ended up in the catch block because the
an image could not be fetched, if that was a side effect of the host
interrupting processing, it is not counted as an error. So we check
that before we return a failed error state from our action.

Finally we release the images we have fetched and return the error
status.

Note

Images should not be held onto outside the scope of the action they
were fetched in, the data will not be guaranteed to be valid. It is
polite to release them as soon as possible, especially if you are
fetching multiple images on input.

Now for our pixel pushing code. [3]

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L242]

// iterate over our pixels and process them
template <class T, int MAX>
void PixelProcessing(OfxImageEffectHandle instance,
 OfxPropertySetHandle sourceImg,
 OfxPropertySetHandle outputImg,
 OfxRectI renderWindow,
 int nComps)
{
 // fetch output image info from the property handle
 int dstRowBytes;
 OfxRectI dstBounds;
 void *dstPtr = NULL;
 gPropertySuite->propGetInt(outputImg, kOfxImagePropRowBytes, 0, &dstRowBytes);
 gPropertySuite->propGetIntN(outputImg, kOfxImagePropBounds, 4, &dstBounds.x1);
 gPropertySuite->propGetPointer(outputImg, kOfxImagePropData, 0, &dstPtr);

 if(dstPtr == NULL) {
 throw "Bad destination pointer";
 }

 // fetch input image info from the property handle
 int srcRowBytes;
 OfxRectI srcBounds;
 void *srcPtr = NULL;
 gPropertySuite->propGetInt(sourceImg, kOfxImagePropRowBytes, 0, &srcRowBytes);
 gPropertySuite->propGetIntN(sourceImg, kOfxImagePropBounds, 4, &srcBounds.x1);
 gPropertySuite->propGetPointer(sourceImg, kOfxImagePropData, 0, &srcPtr);

 if(srcPtr == NULL) {
 throw "Bad source pointer";
 }

We’ve shown bits of this before. Here we have a templated function that
we use to process our pixels. It is templated on the data type that the
components in each pixel will be, as well as a nominal max value to
use in our invert computation.

The first thing it does is to pull out the bounds, rowbytes and
destination pointer of our two images. We can now iterate over the
render window and set pixels in the output image.

invert.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example2/invert.cpp#L273]

 // and do some inverting
 for(int y = renderWindow.y1; y < renderWindow.y2; y++) {
 if(y % 20 == 0 && gImageEffectSuite->abort(instance)) break;

 // get the row start for the output image
 T *dstPix = pixelAddress<T>(renderWindow.x1, y, dstPtr, dstBounds, dstRowBytes, nComps);

 for(int x = renderWindow.x1; x < renderWindow.x2; x++) {

 // get the source pixel
 T *srcPix = pixelAddress<T>(x, y, srcPtr, srcBounds, srcRowBytes, nComps);

 if(srcPix) {
 // we have one, iterate each component in the pixels
 for(int i = 0; i < nComps; ++i) {
 if(i != 3) { // We don't invert alpha.
 *dstPix = MAX - *srcPix; // invert
 }
 else {
 *dstPix = *srcPix;
 }
 ++dstPix; ++srcPix;
 }
 }
 else {
 // we don't have a pixel in the source image, set output to black
 for(int i = 0; i < nComps; ++i) {
 *dstPix = 0;
 ++dstPix;
 }
 }
 }
 }
}

The first thing we do at each row we are processing is to check that the
host hasn’t told our plugin to abort processing. (Ideally you can do
this a bit less often than every line). We only to this every 20th row,
as the overhead on the host side to check for an abort might be quite
high.

The next thing we do is to use the pixelAddress function to find
the address of the first component of the first pixel in the current,
and we put it in dstPix. Because we have a guarantee that the
bounds of the output image are at least as big as the render window, we
can simply increment dstPix across the row as we iterate over
the image.

Now we iterate across the row. We attempt to fetch the address of the
source pixel at our x,y location in the image plane. If we get it we
iterate over the number of component, setting the output to be the
invert [4] of the input. If we don’t get it, we set the output pixel
to all zero.

Note

You notice that we are continually calculating the address of
srcPix at each pixel location and not incrementing the
pointer as we could with dstPix. The reason for this is
that, at the default settings, there is no guarantee as to the
bounds of the input image. It need not be congruent with any other
input, the output or the render window.

I could obviously write this much more efficiently and avoid the
continual address calculation. However for illustrative purposes I
haven’t done that.

Summary

This plugin has shown you the basics of working with OFX images, the
main things it illustrated were…

	what are clips and how we get images from clips,

	how images are laid out in memory and how to
access pixels,

	the basics of the render action

[1]
I won’t bother going into the boot strapping boiler plate, if you are
interested you can look at the source directly.

[2]
The NULL at the end could have been the address of a property set
handle if the effect needed to enquire about the clips properties.

[3]
This is purely illustrative as to how the API works, it is in no way
fast code, I would be ashamed to put code like this into a serious
piece of image processing.

[4]
complement really

 This guide will take you through the basics of creating and using
parameters in OFX. An example plugin will be used to illustrate how it
all works and its source can be found in the C++ file
gain.cpp [https://github.com/ofxa/openfx/blob/master/Guide/Code/Example3/gain.cpp].
This plugin takes an image and
multiplies the pixel by the value held in a user visible parameter.
Ideally you should have read the guide to the basic image
processing before you read this guide.

Parameters

Host applications need parameters to make their own effects work. Such
as the size of a blur effect, colours to apply to some text, a point for
the centre of a lens flare and so on. The host app will use some widget
set to present a user interface for the parameter, have ways to do
undo/redo, saving/loading, manage animation etc…

The OFX parameters suite is the bridge from a plugin to the host’s
native parameter set. So plugin devs don’t have to do all that work for
themselves and also get the other advantages a host’s parameters system
may give (e.g. scripting).

The way it works is fairly simple in concept, we get a plugin to tell
the host what parameters it wants during description. When an instance
is created, the host will make whatever native data structures it needs
to manage those params. The plugin can then grab values from the various
parameters to do what it needs to do during various actions, it can even
write back to parameters under certain conditions.

Our simple gain example will make two parameters, a parameter that is of
type double which is the gain amount and a bool param
which controls whether to apply the gain amount to the Alpha of an RGBA
image. There are more parameter types, and quite a few properties you
can set on a param to control how it should behave in a host
application.
The current parameter types available are listed here.

Note

A key concept in OFX is that the state of a plugin instance is
totally and uniquely defined by the value of its parameters and
input clips. You are asking for trouble if you try and store
important data in separate files and so on. The host won’t be able
to properly know when things have changed, how to manage that extra
data and so on. Attempting to manage data outside of the parameter
set will almost certainly cause hosts to lose track of the correct
render and you will get angry users. This is a fundamental aspect of
the API. If it isn’t in a parameter, it is going to cause problems
with the host if you rely on it.

Actions

This example doesn’t trap any actions you haven’t already seen in the
other examples, it just does a little bit more in them. Seeing as you
should be familiar with how the main entry point works, I won’t bother
with the code listing from now on. The actions our plugin traps are now:

	kOfxActionLoad - to grab suites from the host,

	kOfxActionDescribe and kOfxImageEffectActionDescribeInContext - to
describe the plugin to the host, including parameters,

	kOfxActionCreateInstance and kOfxActionDestroyInstance - to create
and destroy instance data, where we cache handles to clips and
parameters,

	kOfxImageEffectActionIsIdentity - to check if the parameter values
are at their defaults and so the plugin can be ignore by the host,

	kOfxImageEffectActionRender - to actually process pixels.

Now seeing as we are going to be playing with parameters, our plugin
will need a new suite, the parameters suite, and our load action now
looks like:

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L101]

OfxPropertySuiteV1 *gPropertySuite = 0;
OfxImageEffectSuiteV1 *gImageEffectSuite = 0;
OfxParameterSuiteV1 *gParameterSuite = 0;

//
// get the named suite and put it in the given pointer, with error checking
template <class SUITE>
void FetchSuite(SUITE *& suite, const char *suiteName, int suiteVersion)
{
 suite = (SUITE *) gHost->fetchSuite(gHost->host, suiteName, suiteVersion);
 if(!suite) {
 ERROR_ABORT_IF(suite == NULL,
 "Failed to fetch %s version %d from the host.",
 suiteName,
 suiteVersion);
 }
}

//
// The first _action_ called after the binary is loaded
OfxStatus LoadAction(void)
{
 // fetch our three suites
 FetchSuite(gPropertySuite, kOfxPropertySuite, 1);
 FetchSuite(gImageEffectSuite, kOfxImageEffectSuite, 1);
 FetchSuite(gParameterSuite, kOfxParameterSuite, 1);

 return kOfxStatOK;
}

You can see I’ve written a FetchSuite function, as I got bored
of writing the same code over and over. We are now fetching the a suite
of type OfxParameterSuiteV1 which is defined in the header file
ofxParam.h. [2].

Describing Our Plugin

We have the standard two step description process for this plugin. The
Describe action is almost exactly the same as in our previous examples,
some names and labels have been changed is all, so I won’t list it.
However, the describe in context action has a few more things going on.

In the listings below I’ve chopped out the code to describe clips, as it
is exactly the same as in the last example. What’s new is the bit where
we describe parameters. I’ll show the describe in context action in
several small chunks to take you through it.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L228]

OfxStatus
DescribeInContextAction(OfxImageEffectHandle descriptor,
 OfxPropertySetHandle inArgs)
{
 ...
 BIG SNIP OF EXACTLY THE SAME CODE IN THE LAST EXAMPLE
 ...

 // first get the handle to the parameter set
 OfxParamSetHandle paramSet;
 gImageEffectSuite->getParamSet(descriptor, ¶mSet);

 // properties on our parameter
 OfxPropertySetHandle paramProps;

 // now define a 'gain' parameter and set its properties
 gParameterSuite->paramDefine(paramSet,
 kOfxParamTypeDouble,
 GAIN_PARAM_NAME,
 ¶mProps);

The first thing we do is to grab a OfxParamSetHandle from the
effect descriptor. This object represents all the parameters attached to
a plugin and is independent and orthogonal to an image effect.

The parameter suite is then used to define a parameter on that parameter
set. In this case its type is double, and its name is “gain”. These are
the two most important things for a parameter.

Note

The name uniquely identifies that parameter within the API, so no
two parameters can have the same name.

The last argument to paramDefine is an optional pointer to the
new parameter’s property set handle. Each parameter has a set of
properties we use to refine its behaviour, most of which have sensible
defaults.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L278]

gPropertySuite->propSetString(paramProps,
 kOfxParamPropDoubleType,
 0,
 kOfxParamDoubleTypeScale);

The first property on our gain param we set is the kind of double
parameter it is. Many host applications have different kind of double
parameters and user interfaces that make working with them easier. For
example a parameter used to control a rotation might have a little dial
in the UI to spin the angle, a 2D position parameter might get cross
hairs over the image and so on. In this case we are saying that our
double parameter represents a scaling value. OFX has more kinds of
double parameter which you can use to best for your effect.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L282]

gPropertySuite->propSetDouble(paramProps,
 kOfxParamPropDefault,
 0,
 1.0);
gPropertySuite->propSetDouble(paramProps,
 kOfxParamPropMin,
 0,
 0.0);

This section sets a default value for our parameter and a logical a
minimum value below which it cannot go. Note it does not set a maximum
value, so the parameter should not be clamped to any upper value ever.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L290]

gPropertySuite->propSetDouble(paramProps,
 kOfxParamPropDisplayMin,
 0,
 0.0);
gPropertySuite->propSetDouble(paramProps,
 kOfxParamPropDisplayMax,
 0,
 10.0);

Numbers are often manipulated with sliders widgets in user interfaces,
and it is useful to set a range on those sliders. Which is exactly what
we are doing here. This is distinct to the logical minimum and maximum
values, so you can set a useful range for the UI, but still allow the
values to be outside that range. So here a slider would only allow
values between 0.0 and 10.0 for our gain param, but the parameter could
be set to a million via other means, eg: typing in a UI number box,
animation, scripting whatever.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L298]

gPropertySuite->propSetString(paramProps,
 kOfxPropLabel,
 0,
 "Gain");
gPropertySuite->propSetString(paramProps,
 kOfxParamPropHint,
 0,
 "How much to multiply the image by.");

Here we are setting two text field on the param. The first is a label
for the parameter. This is to be used in any UI the host has to label
the parameter. It defaults to the name of the param, but it can be
entirely different. Finally we set a hint string to be used for the
parameter.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L308]

 // and define the 'applyToAlpha' parameters and set its properties
 gParameterSuite->paramDefine(paramSet,
 kOfxParamTypeBoolean,
 APPLY_TO_ALPHA_PARAM_NAME,
 ¶mProps);
 gPropertySuite->propSetInt(paramProps,
 kOfxParamPropDefault,
 0,
 0);
 gPropertySuite->propSetString(paramProps,
 kOfxParamPropHint,
 0,
 "Whether to apply the gain value to alpha as well.");
 gPropertySuite->propSetString(paramProps,
 kOfxPropLabel,
 0,
 "Apply To Alpha");

 return kOfxStatOK;
}

In this last section we define a second parameter, named applyToAlpha,
which is of type boolean. We then set some obvious state on it and we
are done. Notice the label we set, it is much clearer to read than the
name.

And that’s it, we’ve defined two parameters for our plugin. There are
many more properties you can set on your plugin to control how they
behave and to give hints as to what you are going to do to them.

[image: Control Panel For Our Example In Nuke]

Finally, the image above shows the control panel for an instance of our
example inside Nuke.

Instances and Parameters

When the host creates an instance of the plugin, it will first create
all the native data structures it needs to represent the plugin, fully
populate them with the required values, and only then call the create
instance action.

So what happens in the create instance action then? Possibly nothing,
you can always grab parameters from an instance by name at any time. But
to make our code a bit cleaner and to show an example of instance data
being used, we are going to trap create instance.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L111]

//
// our instance data, where we are caching away clip and param handles
struct MyInstanceData {
 // handles to the clips we deal with
 OfxImageClipHandle sourceClip;
 OfxImageClipHandle outputClip;

 // handles to a our parameters
 OfxParamHandle gainParam;
 OfxParamHandle applyToAlphaParam;
};

To stop duplicating code all over, and to minimise fetches to various
handles, we are going to cache away handles to our clips and parameters
in a simple struct. Note that these handles are valid for the duration
of the instance.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L330]

//
/// instance construction
OfxStatus CreateInstanceAction(OfxImageEffectHandle instance)
{
 OfxPropertySetHandle effectProps;
 gImageEffectSuite->getPropertySet(instance, &effectProps);

 // To avoid continual lookup, put our handles into our instance
 // data, those handles are guaranteed to be valid for the duration
 // of the instance.
 MyInstanceData *myData = new MyInstanceData;

 // Set my private instance data
 gPropertySuite->propSetPointer(effectProps, kOfxPropInstanceData, 0, (void *) myData);

 // Cache the source and output clip handles
 gImageEffectSuite->clipGetHandle(instance, "Source", &myData->sourceClip, 0);
 gImageEffectSuite->clipGetHandle(instance, "Output", &myData->outputClip, 0);

 // Cache away the param handles
 OfxParamSetHandle paramSet;
 gImageEffectSuite->getParamSet(instance, ¶mSet);
 gParameterSuite->paramGetHandle(paramSet,
 GAIN_PARAM_NAME,
 &myData->gainParam,
 0);
 gParameterSuite->paramGetHandle(paramSet,
 APPLY_TO_ALPHA_PARAM_NAME,
 &myData->applyToAlphaParam,
 0);

 return kOfxStatOK;
}

So here is the function called when we trap a create instance action.
You can see that it allocates a MyInstanceData struct and caches it away
in the instance’s property set.

It then fetches handles to the two clips and two parameters by name and
caches those into the newly created struct.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L123]

//
// get my instance data from a property set handle
MyInstanceData *FetchInstanceData(OfxPropertySetHandle effectProps)
{
 MyInstanceData *myData = 0;
 gPropertySuite->propGetPointer(effectProps,
 kOfxPropInstanceData,
 0,
 (void **) &myData);
 return myData;
}

And here is a simple function to fetch instance data. It is actually
overloaded and there is another version that take an
OfxImageEffectHandle.

Of course we now need to trap the destroy instance action to delete our
instance data, otherwise we will get memory leaks.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L364]

//
// instance destruction
OfxStatus DestroyInstanceAction(OfxImageEffectHandle instance)
{
 // get my instance data
 MyInstanceData *myData = FetchInstanceData(instance);
 delete myData;

 return kOfxStatOK;
}

Getting Values From Instances

So we’ve define our parameters, we’ve got handles to the instance of
them, but we will want to grab the value of the parameters to actually
use them at render time.

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L490]

 //
 // Render an output image
 OfxStatus RenderAction(OfxImageEffectHandle instance,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
 {
 // get the render window and the time from the inArgs
 OfxTime time;
 OfxRectI renderWindow;
 OfxStatus status = kOfxStatOK;

 gPropertySuite->propGetDouble(inArgs, kOfxPropTime, 0, &time);
 gPropertySuite->propGetIntN(inArgs, kOfxImageEffectPropRenderWindow, 4, &renderWindow.x1);

 // get our instance data which has out clip and param handles
 MyInstanceData *myData = FetchInstanceData(instance);

 // get our param values
 double gain = 1.0;
 int applyToAlpha = 0;
 gParameterSuite->paramGetValueAtTime(myData->gainParam, time, &gain);
 gParameterSuite->paramGetValueAtTime(myData->applyToAlphaParam, time, &applyToAlpha);

....

We are using the OfxParameterSuiteV1::paramGetValueAtTime() suite function to get the
value of our parameters for the given time we are rendering at. Nearly
all actions passed to an instance will have a time to perform the
instance at, you should use this when fetching values out of a param.

The param get value functions use var-args to return values to plugins,
similar to a C scanf function.

And finally here is a snippet of the templated pixel pushing code where
we do the actual processing using our parameter values;

gain.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example3/gain.cpp#L437]

// and do some processing
for(int y = renderWindow.y1; y < renderWindow.y2; y++) {
 if(y % 20 == 0 && gImageEffectSuite->abort(instance)) break;

 // get the row start for the output image
 T *dstPix = pixelAddress<T>(renderWindow.x1, y,
 dstPtr,
 dstBounds,
 dstRowBytes,
 nComps);

 for(int x = renderWindow.x1; x < renderWindow.x2; x++) {

 // get the source pixel
 T *srcPix = pixelAddress<T>(x, y,
 srcPtr,
 srcBounds,
 srcRowBytes,
 nComps);

 if(srcPix) {
 // we have one, iterate each component in the pixels
 for(int i = 0; i < nComps; ++i) {
 if(i != 3 || applyToAlpha) {
 // multiply our source component by our gain value
 double value = *srcPix * gain;

 // if it has gone out of legal bounds, clamp it
 if(MAX != 1) { // we let floating point pixels over and underflow
 value = value < 0 ? 0 : (value > MAX ? MAX : value);
 }
 *dstPix = T(value);
 }
 else {
 *dstPix = *srcPix;
 }
 // increment to next component
 ++dstPix; ++srcPix;
 }
 }
 else {
 // we don't have a pixel in the source image, set output to zero
 for(int i = 0; i < nComps; ++i) {
 *dstPix = 0;
 ++dstPix;
 }
 }
 }
}

Notice that we are checking to see if MAX != 1, which means our
pixels are not floating point. If that is the case, we are clamping the
pixel’s value so we don’t get integer overflow.

Summary

This plugin has shown you the basics of working with OFX parameters, the
main things it illustrated were:

	defining parameters in the define in context action,

	setting properties to control the behaviour of parameters,

	using the instance data pointer to cache away handles to instances of
parameters and clips,

	fetching values of a parameter from parameter instance handles and
using them to process pixels.

[1]
the API manages all floating point params as doubles, the host could
be using 32 bit floats, or fixed precision for that matter, so long
as the values are passed back and forth over the API as doubles, all
will be fine

[2]
The suite is completely independent of the image effect suite and
could happily be used to describe parameters to other types of
plugins

 This guide will take you through the basics of creating effects that can
be used in more than one context, as well as how to make a multi-input
effect. Its source can be found in the C++ file
saturation.cpp [https://github.com/ofxa/openfx/blob/master/Guide/Code/Example4/saturation.cpp].
This plugin takes an RGB or RGBA
image and increases or descreases the saturation by a parameter. It can
be used in two contexts, firstly as a simple filter, secondly as a
general effect, where it has an optional second input clip which is used
to control where the effect is applied.

Multiple Contexts, Why Bother?

As briefly described in the first example, OFX has the concept of
contexts that an effect can be used in. Our example is going to work in
the filter context and the general context.

The rules for a filter context are that it has to have one and only one
input clip, called Source and one and only one output clip called
Output.

For a general context, you have to have a single mandated clip called
Output and that is it. You are free to have as many input clips as you
need, name them how you feel and use choose how to set certain important
properties of the output.

Why would we want to do this? Because not all host applications behave
the same way. For example an editing application will typically allow
effects to be applied to clips on a timeline, and the effect can only
take a single input when used like that. A complicated node-based
compositor is less restrictive, its effect can typically have any number
of inputs and the rules for certain behaviours are relaxed.

So you’ve written your OFX effect, and it can work with a single input,
but would ideally work much better with multiple inputs. You also want
it to work as best it can across a range of host applications. If you
could only write it as a multi-input general effect with more than one
input, it couldn’t work in an editor. However if you wrote it as a
single input effect, it wouldn’t work as well as it could in a node
based compositor. Having your effect work in multiple contexts is the
way to have it work as best as possible in both applications.

In this way an OFX host application, which knows which contexts it can
support, will inspect the contexts a plugin says it can be used it, and
choose the most appropriate one for what it wants to do.

This example plugin shows you how to do that.

Describing Our Plugin

Our basic describe action is pretty much the same as all the other
examples, but with one minor difference, we set two contexts in which
the effect can be used in.

saturation.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example4/saturation.cpp#347]

// Define the image effects contexts we can be used in, in this case a filter
// and a general effect.
gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedContexts,
 0,
 kOfxImageEffectContextFilter);

gPropertySuite->propSetString(effectProps,
 kOfxImageEffectPropSupportedContexts,
 1,
 kOfxImageEffectContextGeneral);

The snippet above shows that the effect is saying it can be used in the
filter and general contexts.

Both of these have rules associated as to how the plugin behaves in that
context. Because the filter context is so simple, most of the default
behaviour just works and you don’t have to trap many other actions.

In the case of the general context, the default behaviour might not work
the way you want, and you may have to trap other actions. Fortunately
the defaults work for us as will.

saturation.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example4/saturation.cpp#388]

//
// describe the plugin in context
OfxStatus
DescribeInContextAction(OfxImageEffectHandle descriptor,
 OfxPropertySetHandle inArgs)
{
 // get the context we are being described for
 char *context;
 gPropertySuite->propGetString(inArgs, kOfxImageEffectPropContext, 0, &context);

 OfxPropertySetHandle props;
 // define the mandated single output clip
 gImageEffectSuite->clipDefine(descriptor, "Output", &props);

 // set the component types we can handle on out output
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 0,
 kOfxImageComponentRGBA);
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 1,
 kOfxImageComponentRGB);

 // define the mandated single source clip
 gImageEffectSuite->clipDefine(descriptor, "Source", &props);

 // set the component types we can handle on our main input
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 0,
 kOfxImageComponentRGBA);
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 1,
 kOfxImageComponentRGB);

 if(strcmp(context, kOfxImageEffectContextGeneral) == 0) {
 gImageEffectSuite->clipDefine(descriptor, "Mask", &props);

 // set the component types we can handle on our main input
 gPropertySuite->propSetString(props,
 kOfxImageEffectPropSupportedComponents,
 0,
 kOfxImageComponentAlpha);
 gPropertySuite->propSetInt(props,
 kOfxImageClipPropOptional,
 0,
 1);
 gPropertySuite->propSetInt(props,
 kOfxImageClipPropIsMask,
 0,
 1);
 }

 ...
 [SNIP]
 ...

 return kOfxStatOK;
}

I’ve snipped the simple parameter definition code out to save some
space.

Here we have the describe in context action. This will now be called
once for each context that a host application wants to support. You know
which contex you are being described in by the
kOfxImageEffectPropContext property on inArgs.

Regardless of the context, it describes two clips, “Source” and
“Output”, which will work fine both as a filter and a general context.
Note that we won’t support alpha on these two clips, we only support
images that have colour components, as how can you saturate a single
channel image?

Finally, if the effect is in the general context, we describe a third
clip and call it “Mask”. We then tell the host about that clip…

	firstly, that we only want single component images from that clip

	secondly, that the clip is optional,

	thirdly, that this clip is to be interpreted as a mask, so hosts
that manage such things separately, know it can be fed into this
input.

[image: Saturation Example in Nuke]

The image above shows our saturation example running inside Nuke. Nuke
chose to instantiate the plugin as a general context effect, not a
filter, as general contexts are the ones it prefers. You can see the
graph, and our saturation node has two inputs, one for the mask and one
for the source image. The control panel for the effect is also shown,
with the saturation value set to zero. Note the extra MaskChannel
param, which was not specified by the plugin. This was automatically
generated by Nuke when it saw that the Mask input to the effect was a
single channel, so as to allow the user to choose which one to use as a
mask.

The result is an image whose desaturation amount is modulated by the
alpha channel of the mask image, which in this case is a right to left
ramp.

The Other Actions

All the other actions should be fairly familiar and you should be able
to reason them out pretty easily. The two that have any significant
differences because of the multi context use are the create instance
action and the render action.

Create Instance

This is pretty familiar, though we have a slight change to handle the
mask input.

saturation.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example4/saturation.cpp#483]

//
/// instance construction
OfxStatus CreateInstanceAction(OfxImageEffectHandle instance)
{
 OfxPropertySetHandle effectProps;
 gImageEffectSuite->getPropertySet(instance, &effectProps);

 // To avoid continual lookup, put our handles into our instance
 // data, those handles are guaranteed to be valid for the duration
 // of the instance.
 MyInstanceData *myData = new MyInstanceData;

 // Set my private instance data
 gPropertySuite->propSetPointer(effectProps, kOfxPropInstanceData, 0, (void *) myData);

 // is this instance made for the general context?
 char *context = 0;
 gPropertySuite->propGetString(effectProps, kOfxImageEffectPropContext, 0, &context);
 myData->isGeneralContext = context &&
 (strcmp(context, kOfxImageEffectContextGeneral) == 0);

 // Cache the source and output clip handles
 gImageEffectSuite->clipGetHandle(instance, "Source", &myData->sourceClip, 0);
 gImageEffectSuite->clipGetHandle(instance, "Output", &myData->outputClip, 0);

 if(myData->isGeneralContext) {
 gImageEffectSuite->clipGetHandle(instance, "Mask", &myData->maskClip, 0);
 }

 // Cache away the param handles
 OfxParamSetHandle paramSet;
 gImageEffectSuite->getParamSet(instance, ¶mSet);
 gParameterSuite->paramGetHandle(paramSet,
 SATURATION_PARAM_NAME,
 &myData->saturationParam,
 0);

 return kOfxStatOK;
}

We are again using instance data to cache away a set of handles to clips
and params (the constructor of which sets them all to NULL). We are also
recording which context we have had our instance created for by checking
the kOfxImageEffectPropContext property of the effect. If it is a
general context we also cache the Mask input in our instance data.
Pretty easy.

Rendering

Because we are now using a class to wrap up OFX images (see
below) the render code is a bit tidier but
is pretty much still the same really. The major difference is that we
are now fetching a third image, for the mask image, and we are prepared
for this to fail and keep going as we may be in the filter context, or
we may be in the general context but the clip is not connected.

saturation.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example4/saturation.cpp#629]

// Render an output image
OfxStatus RenderAction(OfxImageEffectHandle instance,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
{
 // get the render window and the time from the inArgs
 OfxTime time;
 OfxRectI renderWindow;
 OfxStatus status = kOfxStatOK;

 gPropertySuite->propGetDouble(inArgs,
 kOfxPropTime,
 0,
 &time);
 gPropertySuite->propGetIntN(inArgs,
 kOfxImageEffectPropRenderWindow,
 4,
 &renderWindow.x1);

 // get our instance data which has out clip and param handles
 MyInstanceData *myData = FetchInstanceData(instance);

 // get our param values
 double saturation = 1.0;
 gParameterSuite->paramGetValueAtTime(myData->saturationParam, time, &saturation);

 // the property sets holding our images
 OfxPropertySetHandle outputImg = NULL, sourceImg = NULL, maskImg = NULL;
 try {
 // fetch image to render into from that clip
 Image outputImg(myData->outputClip, time);
 if(!outputImg) {
 throw " no output image!";
 }

 // fetch image to render into from that clip
 Image sourceImg(myData->sourceClip, time);
 if(!sourceImg) {
 throw " no source image!";
 }

 // fetch mask image at render time from that clip, it may not be there
 // as we might in the filter context or it might not be attached as it
 // is optional, so don't worry if we don't have one.
 Image maskImg(myData->maskClip, time);

 // now do our render depending on the data type
 if(outputImg.bytesPerComponent() == 1) {
 PixelProcessing<unsigned char, 255>(saturation,
 instance,
 sourceImg,
 maskImg,
 outputImg,
 renderWindow);
 }
 else if(outputImg.bytesPerComponent() == 2) {
 PixelProcessing<unsigned short, 65535>(saturation,
 instance,
 sourceImg,
 maskImg,
 outputImg,
 renderWindow);
 }
 else if(outputImg.bytesPerComponent() == 4) {
 PixelProcessing<float, 1>(saturation,
 instance,
 sourceImg,
 maskImg,
 outputImg,
 renderWindow);
 }
 else {
 throw " bad data type!";
 throw 1;
 }

 }
 catch(const char *errStr) {
 bool isAborting = gImageEffectSuite->abort(instance);

 // if we were interrupted, the failed fetch is fine, just return kOfxStatOK
 // otherwise, something weird happened
 if(!isAborting) {
 status = kOfxStatFailed;
 }
 ERROR_IF(!isAborting, " Rendering failed because %s", errStr);
 }

 // all was well
 return status;
}

The actual pixel processing code does the standard saturation
calculation on each pixel, scaling each of R, G and B around their
common average. The tweak we add is to modulate the amount of the effect
by looking at the pixel values of the mask input if we have one. Again
this is not meant to be fast code, just illustrative.

saturation.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example4/saturation.cpp#553]

//
// iterate over our pixels and process them
template <class T, int MAX>
void PixelProcessing(double saturation,
 OfxImageEffectHandle instance,
 Image &src,
 Image &mask,
 Image &output,
 OfxRectI renderWindow)
{
 int nComps = output.nComponents();

 // and do some processing
 for(int y = renderWindow.y1; y < renderWindow.y2; y++) {
 if(y % 20 == 0 && gImageEffectSuite->abort(instance)) break;

 // get the row start for the output image
 T *dstPix = output.pixelAddress<T>(renderWindow.x1, y);

 for(int x = renderWindow.x1; x < renderWindow.x2; x++) {

 // get the source pixel
 T *srcPix = src.pixelAddress<T>(x, y);

 // get the amount to mask by, no mask image means we do the full effect everywhere
 float maskAmount = 1.0f;
 if (mask) {
 // get our mask pixel address
 T *maskPix = mask.pixelAddress<T>(x, y);
 if(maskPix) {
 maskAmount = float(*maskPix)/float(MAX);
 }
 else {
 maskAmount = 0;
 }
 }

 if(srcPix) {
 if(maskAmount == 0) {
 // we have a mask input, but the mask is zero here,
 // so no effect happens, copy source to output
 for(int i = 0; i < nComps; ++i) {
 *dstPix = *srcPix;
 ++dstPix; ++srcPix;
 }
 }
 else {
 // we have a non zero mask or no mask at all

 // find the average of the R, G and B
 float average = (srcPix[0] + srcPix[1] + srcPix[2])/3.0f;

 // scale each component around that average
 for(int c = 0; c < 3; ++c) {
 float value = (srcPix[c] - average) * saturation + average;
 if(MAX != 1) {
 value = Clamp<T, MAX>(value);
 }
 // use the mask to control how much original we should have
 dstPix[c] = Blend(srcPix[c], value, maskAmount);
 }

 if(nComps == 4) { // if we have an alpha, just copy it
 dstPix[3] = srcPix[3];
 }
 dstPix += 4;
 }
 }
 else {
 // we don't have a pixel in the source image, set output to zero
 for(int i = 0; i < nComps; ++i) {
 *dstPix = 0;
 ++dstPix;
 }
 }
 }
 }
}

A Bit Of Housekeeping

You may have noticed I’ve gone and created an Image class. I got
bored of passing around various pointers and bounds and strides in my
code and decided to tidy it up.

saturation.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example4/saturation.cpp#110]

//
// class to manage OFX images
class Image {
public :
 // construct from a property set that represents the image
 Image(OfxPropertySetHandle propSet);

 // construct from a clip by fetching an image at the given frame
 Image(OfxImageClipHandle clip, double frame);

 // destructor
 ~Image();

 // get a pixel address, cast to the right type
 template <class T>
 T *pixelAddress(int x, int y)
 {
 return reinterpret_cast<T *>(rawAddress(x, y));
 }

 // Is this image empty?
 operator bool()
 {
 return propSet_ != NULL && dataPtr_ != NULL;
 }

 // bytes per component, 1, 2 or 4 for byte, short and float images
 int bytesPerComponent() const { return bytesPerComponent_; }

 // number of components
 int nComponents() const { return nComponents_; }

protected :
 void construct();

 // Look up a pixel address in the image. returns null if the pixel was not
 // in the bounds of the image
 void *rawAddress(int x, int y);

 OfxPropertySetHandle propSet_;
 int rowBytes_;
 OfxRectI bounds_;
 char *dataPtr_;
 int nComponents_;
 int bytesPerComponent_;
 int bytesPerPixel_;
};

It takes an OfxPropertySetHandle and pulls all the bits it needs out of
that into a class. It uses all the same pixel access logic as in example
2. Ideally I should put this in a library which our example links to,
but I’m keeping all the code for each example in one source file for
illustrative purposes. Feel free to steal this and use it in your own
code [1].

Summary

This plugin has shown you - the basics of working with multiple
contexts, - how to handle optional input clips, - restricting pixel
types on input and output clips.

[1]
provided you stick to the conditions listed at the top of source file

 This guide will introduce the spatial coordinate system used by OFX and
will illustrate that with a simple circle drawing plugin.
Its source can be found in the source code file
circle.cpp [https://github.com/ofxa/openfx/blob/master/Guide/Code/Example5/circle.cpp].
This plugin takes a clip and draws a circle over it. The colour, size and position
of the circle are controlled by several parameters.

Spatial Coordinate Systems

There are two main coordinate systems in OFX, these are the pixel
coordinates system and the canonical coordinates system. I’ll
describe them both, but first a slight digression.

Pixel Aspect Ratios

Some display formats (for example standard definition PAL and NTSC) have
non square pixels, which is quite annoying in my opinion. The pixel
aspect ratio [https://en.wikipedia.org/wiki/Pixel_aspect_ratio]
defines how non-square your pixel is.

[image: Addressable Pixels In An PAL 16:9 Image]

For example, a digital PAL 16:9 wide-screen image has 720 by 576 actual
addressable pixels, however it has a pixel aspect ratio of ~1.42 [1].

[image: PAL 16:9 As It Appears On Your Telly]

This means on the display device, each of those pixels are stretched
horizontally by a factor of ~1.42. If it were square pixels, our
displayed image would actually have 1024 pixels.

Looking at the two images above you can distinctly see the affect that
the PAR has, the image appears squashed when viewed as raw pixels, but
these stretch out to look correct on our final display device.

Render Scales

Applications typically let a user generate low resolution proxy previews
of their work, either to save time or space until they have finished. In
OFX we call this applying a render scale, which has two values one
for X and one for Y.

If we were doing a half resolution proxy render of our PAL 16:9 project,
we’d have a renderscale of (0.5,0.5), and 360 by 288 addressable pixels
in an image, with a PAR of 1.42.

[image: Addressable Pixels In An PAL 16:9 Image at Half Proxy]

Coordinate Systems

We call the coordinate system which allows us to index honest to
goodness pixels in memory, the pixel
coordinates system. It is
usually represented with integers. For example the bounds of our
image data are in pixel coordinates.

Now expressing positions or sizes on the image plane in pixel
coordinates is problematic, both because of pixel aspect ratios and
render scales. The problem with sizes is that a circle drawn with a
constant radius in pixel coordinates will not necessarily be circular on
the final display device, it will be stretched by the pixel aspect
ratio. Circles won’t be round.

A similar problem applies to render scales, when you say something is at
a position, it has to be independent of the renderscale.

To get around this, we have the canonical coordinates system. This is
on an idealised image plane, where all pixels are square and we have no
scales applied to any data. Canonical coordinates are typically
represented by doubles.

Back to our PAL 16:9 example. The canonical coordinate system for that
image would always has x==0 at the left and x==1023 at the right,
circles are always appear to be round and the arithmetic is easy. We use
the canonical coordinate system to express render scale and PAR
invariant data. This is the coordinate system we express spatial
parameters in.

There was a third coordinate system, the Normalised Coordinates System,
but in practice this proved to be problematic and has been deprecated.

Mapping Between Coordinate Systems

Obviously on render you will need to map parameters from canonical coordinates
to the required pixel coordinates, or vice versa. That is
fortunately very easy, you just need to do a bit of multiplying via the
pixel aspect ratio and the renderscale.
See reference for more details.

Loading Our Plugin

This plugin highlights the fact that the OFX API is really a way a
plugin and a host can have a discussion so they can both figure out how
they should operate. It allows plugins to modify their behaviour
depending on what the host says it can do.

Here is the source for the load action…

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L348]

//
// The first _action_ called after the binary is loaded (three boot strapper functions will be howeever)
OfxStatus LoadAction(void)
{
 // fetch our three suites
 FetchSuite(gPropertySuite, kOfxPropertySuite, 1);
 FetchSuite(gImageEffectSuite, kOfxImageEffectSuite, 1);
 FetchSuite(gParameterSuite, kOfxParameterSuite, 1);

 int verSize = 0;
 if(gPropertySuite->propGetDimension(gHost->host, kOfxPropAPIVersion, &verSize) == kOfxStatOK) {
 verSize = verSize > 2 ? 2 : verSize;
 gPropertySuite->propGetIntN(gHost->host,
 kOfxPropAPIVersion,
 2,
 gAPIVersion);
 }

 // we only support 1.2 and above
 if(gAPIVersion[0] == 1 && gAPIVersion[1] < 2) {
 return kOfxStatFailed;
 }

 /// does the host support multi-resolution images
 gPropertySuite->propGetInt(gHost->host,
 kOfxImageEffectPropSupportsMultiResolution,
 0,
 &gHostSupportsMultiRes);

 return kOfxStatOK;
}

It fetches three suites then it checks to see if the
kOfxPropAPIVersion property exists on the host, if it does it then
checks that the version is at least “1.2”, as we later rely on features
only available in that version of the API.

The next thing it does is to check that the host is supports multiple
resolutions. This is short hand for saying that the host allows input
and output clips to have different regions of definition, and images may
be passed to the plugin that have differing bounds. This is also a
property of the plugin descriptor, but we’ve left it at the default
value, which is true, as our plugin does support multiple resolutions.

We are checking for multiple resolution support to conditionally modify
our plugin’s behaviour in later actions.

Description

Now, onto our plugin. The description action is pretty standard, as is
the describe in context action. I’ll just show you snippets of the
interesting bits.

Note, we are relying on a parameter type that is only available with the
1.2 version of OFX. Our plugin checks for this version of the API the
host supports and will fail gracefully during the load action.

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L471]

// set the properties on the radius param
gParameterSuite->paramDefine(paramSet,
 kOfxParamTypeDouble,
 RADIUS_PARAM_NAME,
 &radiusParamProps);

gPropertySuite->propSetString(radiusParamProps,
 kOfxParamPropDoubleType,
 0,
 kOfxParamDoubleTypeX);

gPropertySuite->propSetString(radiusParamProps,
 kOfxParamPropDefaultCoordinateSystem,
 0,
 kOfxParamCoordinatesNormalised);

gPropertySuite->propSetDouble(radiusParamProps,
 kOfxParamPropDefault,
 0,
 0.25);
gPropertySuite->propSetDouble(radiusParamProps,
 kOfxParamPropMin,
 0,
 0);
gPropertySuite->propSetDouble(radiusParamProps,
 kOfxParamPropDisplayMin,
 0,
 0.0);
gPropertySuite->propSetDouble(radiusParamProps,
 kOfxParamPropDisplayMax,
 0,
 2.0);
gPropertySuite->propSetString(radiusParamProps,
 kOfxPropLabel,
 0,
 "Radius");
gPropertySuite->propSetString(radiusParamProps,
 kOfxParamPropHint,
 0,
 "The radius of the circle.");

Here we are defining the parameter that controls the radius of our
circle we will draw. It’s a double param, and the type of double param
is kOfxParamDoubleTypeX, [2] which says to the host, this
represents a size in X in canonical coordinates. The host can display
that however it like, but to the API, it needs to pass values back in
canonical coordinates.

The other thing we do is to set up the default value. Which is 0.25,
which seems to be a mighty small circle, as is the display maximum value
of 2.0. However, note the property
kOfxParamPropDefaultCoordinateSystem being set to
kOfxParamCoordinatesNormalised, this says that defaults/mins/maxes
are being described relative to the project size. So our circle’s radius
will default to be a quarter of the nominal project size’s x dimension.
For a 1080 HD project, this would be a value of 480.

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L513]

// set the properties on the centre param
OfxPropertySetHandle centreParamProps;
static double centreDefault[] = {0.5, 0.5};

gParameterSuite->paramDefine(paramSet,
 kOfxParamTypeDouble2D,
 CENTRE_PARAM_NAME,
 ¢reParamProps);

gPropertySuite->propSetString(centreParamProps,
 kOfxParamPropDoubleType,
 0,
 kOfxParamDoubleTypeXYAbsolute);
gPropertySuite->propSetString(centreParamProps,
 kOfxParamPropDefaultCoordinateSystem,
 0,
 kOfxParamCoordinatesNormalised);
gPropertySuite->propSetDoubleN(centreParamProps,
 kOfxParamPropDefault,
 2,
 centreDefault);
gPropertySuite->propSetString(centreParamProps,
 kOfxPropLabel,
 0,
 "Centre");
gPropertySuite->propSetString(centreParamProps,
 kOfxParamPropHint,
 0,
 "The centre of the circle.");

Here we are defining the parameter that controls the position of the
centre of our circle. It’s a 2D double parameter and we are telling the
host that it represents an absolute position in the canonical coordinate
system [3]. Some hosts will automatically add user interface handles
for such parameters to let you simply drag such positions around. We are
also setting the default values relative to the project size, and in
this case (0.5, 0.5), it should appear in the centre of the final image.

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L543]

// set the properties on the colour param
OfxPropertySetHandle colourParamProps;
static double colourDefault[] = {1.0, 1.0, 1.0, 0.5};

gParameterSuite->paramDefine(paramSet,
 kOfxParamTypeRGBA,
 COLOUR_PARAM_NAME,
 &colourParamProps);
gPropertySuite->propSetDoubleN(colourParamProps,
 kOfxParamPropDefault,
 4,
 colourDefault);
gPropertySuite->propSetString(colourParamProps,
 kOfxPropLabel,
 0,
 "Colour");
gPropertySuite->propSetString(centreParamProps,
 kOfxParamPropHint,
 0,
 "The colour of the circle.");

This is obvious, we are defining an RGBA parameter to control the colour
and transparency of our circle. Colours are always normalised 0 to 1, so
when you get and set the colour, you need to scale the values up to the
nominal white point of your image, which is implicitly defined by the
data type of the image.

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L564]

if(gHostSupportsMultiRes) {
 OfxPropertySetHandle growRoDParamProps;
 gParameterSuite->paramDefine(paramSet,
 kOfxParamTypeBoolean,
 GROW_ROD_PARAM_NAME,
 &growRoDParamProps);
 gPropertySuite->propSetInt(growRoDParamProps,
 kOfxParamPropDefault,
 0,
 0);
 gPropertySuite->propSetString(growRoDParamProps,
 kOfxParamPropHint,
 0,
 "Whether to grow the output's Region of Definition to include the circle.");
 gPropertySuite->propSetString(growRoDParamProps,
 kOfxPropLabel,
 0,
 "Grow RoD");
}

Finally, we are conditionally defining a boolean parameter that controls
whether our circle affects the region of definition of our output image.
We only able to modify the region of definition if the host has an
architecture that supports that behaviour, which we checked at load time
where we set the gHostSupportsMultiRes global variable.

Get Region Of Definition Action

What is this region of definition action? Easy, an effect and a clip
have a region of definition (RoD). This is the maximum rectangle for
which an effect or clip can produce pixels. You can ask for RoD of a
clip via the OfxImageEffectSuiteV1::clipGetRegionOfDefinition() function in the image
effect suite. The RoD is currently defined in canonical coordinates

[4].

Note that the RoD is independent of the bounds of a image, an
image’s bounds may be less than, more than or equal to the RoD. It is up
to host how or why it wants to manage the RoD differently. As noted
above, some hosts don’t have the ability to do any such thing.

By default the RoD of the output is the union of all the RoDs from all
the mandatory input clips. In our example, we want to be able to set the
RoD to be the union of the input clip with the area the circle we are
drawing. Whether we do that or not is controlled by the “growRoD”
parameter which is conditionally defined in the describe in context
action.

To set the output rod, we need to trap the
kOfxImageEffectActionGetRegionOfDefinition action. Our MainEntry
function now has an extra conditional in there….

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L978]

...
else if(gHostSupportsMultiRes && strcmp(action, kOfxImageEffectActionGetRegionOfDefinition) == 0) {
 returnStatus = GetRegionOfDefinitionAction(effect, inArgs, outArgs);
}
...

Note that we don’t trap this on hosts that aren’t multi-resolution, as by
definition on those hosts RoDs are fixed.

The code for the action itself is quite simple:

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L844]

// tells the host what region we are capable of filling
OfxStatus
GetRegionOfDefinitionAction(OfxImageEffectHandle effect,
 OfxPropertySetHandle inArgs,
 OfxPropertySetHandle outArgs)
{
 // retrieve any instance data associated with this effect
 MyInstanceData *myData = FetchInstanceData(effect);

 OfxTime time;
 gPropertySuite->propGetDouble(inArgs, kOfxPropTime, 0, &time);

 int growingRoD;
 gParameterSuite->paramGetValueAtTime(myData->growRoD, time,
 &growingRoD);

 // are we growing the RoD to include the circle?
 if(not growingRoD) {
 return kOfxStatReplyDefault;
 }
 else {
 double radius = 0.0;
 gParameterSuite->paramGetValueAtTime(myData->radiusParam, time,
 &radius);

 double centre[2];
 gParameterSuite->paramGetValueAtTime(myData->centreParam, time,
 ¢re[0],
 ¢re[1]);

 // get the source rod
 OfxRectD rod;
 gImageEffectSuite->clipGetRegionOfDefinition(myData->sourceClip, time, &rod);

 if(rod.x1 > centre[0] - radius) rod.x1 = centre[0] - radius;
 if(rod.y1 > centre[1] - radius) rod.y1 = centre[1] - radius;

 if(rod.x2 < centre[0] + radius) rod.x2 = centre[0] + radius;
 if(rod.y2 < centre[1] + radius) rod.y2 = centre[1] + radius;

 // set the rod in the out args
 gPropertySuite->propSetDoubleN(outArgs, kOfxImageEffectPropRegionOfDefinition, 4, &rod.x1);

 // and say we trapped the action and we are at the identity
 return kOfxStatOK;
 }
}

We are being asked to calculate the RoD at a specific time, which means
that RoDs are time varying in OFX.

We check our growRoD parameter to see if we are going to actually
modify the RoD. If we do, we find out, in canonical coordinates, where
we are drawing our circle. We then fetch the region of definition and
make a union of those two regions. We then set the
kOfxImageEffectPropRegionOfDefinition return property on outArgs
and say that we trapped the action.

All fairly easy.

Is Identity Action

Our identity checking action is fairly obvious, we check to see if our
circle has a non zero radius, and to see if we are not growing the RoD
and our circle is outside the RoD.

Rendering

The action code is fairly boiler plate, it fetches parameter values and
images from clips before calling the templated PixelProcessing function.
Which is below:

circle.cpp [https://github.com/ofxa/openfx/blob/doc/Documentation/sources/Guide/Code/Example5/circle.cpp#L670]

template <class T, int MAX>
void PixelProcessing(OfxImageEffectHandle instance,
 Image &src,
 Image &output,
 double centre[2],
 double radius,
 double colour[4],
 double renderScale[2],
 OfxRectI renderWindow)
{ // pixel aspect of our output
 float PAR = output.pixelAspectRatio();

 T colourQuantised[4];
 for(int c = 0; c < 4; ++c) {
 colourQuantised[c] = Clamp<T, MAX>(colour[c] * MAX);
 }

 // now do some processing
 for(int y = renderWindow.y1; y < renderWindow.y2; y++) {
 if(y % 20 == 0 && gImageEffectSuite->abort(instance)) break;

 // get our y coord in canonical space
 float yCanonical = (y + 0.5f)/renderScale[1];

 // how far are we from the centre in y, canonical
 float dy = yCanonical - centre[1];

 // get the row start for the output image
 T *dstPix = output.pixelAddress<T>(renderWindow.x1, y);

 for(int x = renderWindow.x1; x < renderWindow.x2; x++) {
 // get our x pixel coord in canonical space,
 float xCanonical = (x + 0.5) * PAR/renderScale[0];

 // how far are we from the centre in x, canonical
 float dx = xCanonical - centre[0];

 // distance to the centre of our circle, canonical
 float d = sqrtf(dx * dx + dy * dy);

 // this will hold the antialiased value
 float alpha = colour[3];

 // Is the square of the distance to the centre
 // less than the square of the radius?
 if(d < radius) {
 if(d > radius - 1) {
 // we are within 1 pixel of the edge, modulate
 // our alpha with an anti-aliasing value
 alpha *= radius - d;
 }
 }
 else {
 // outside, so alpha is 0
 alpha = 0;
 }

 // get the source pixel
 const T *srcPix = src.pixelAddressWithFallback<T>(x, y);

 // scale each component around that average
 for(int c = 0; c < output.nComponents(); ++c) {
 // use the mask to control how much original we should have
 dstPix[c] = Blend(srcPix[c], colourQuantised[c], alpha);
 }
 dstPix += output.nComponents();
 }
 }
}

Please don’t think I actually write production code as slow as this, I’m
just making the whole thing as clear as possible in my example.

The first thing we do is to scale the normalised value for our circle
colour up to a quantised value based on our data type. So multiplying up
by 255 for 8 bit data types, 65536 for 16bit ints and 1 for floats.

To draw the circle we are transforming a pixel’s position in pixel space
into a canonical coordinate. We then calculate the distance to the
centre of the circle, again in canonical coordinates. We use that
distance to see if we are inside or out of the circle, with a bit of
anti-aliasing thrown in. This gives us a normalised alpha value.

Our output value is our source pixel blended with our circle colour
based on the intensity of the calculated alpha.

Summary

This example plugin has shown …

	the two main OFX spatial coordinate systems,

	how to use the region of definition action,

	that the API is a negotiation between a host and a plugiun,

	mapping between coordinate systems for rendering.

[1]
Yes, it can also be 1.46, depending on who you talk to. Today I’m
picking 1.42 to force an exact 16 by 9 aspect on a PAL’s 720x576
pixels

[2]
this double parameter type is only available API versions 1.2 or
above

[3]
this double parameter type is only available API versions 1.2 or
above

[4]
we are debating whether to modifying that to be in pixel coordinates

Sequences of Operations Required to Load a Plug-in

The following sequence of operations needs to be performed by a host
before it can start telling a plug-in what to do via its mainEntry
function.

	the binary containing the plug-in is loaded,

	(if implemented by plugin and host): the host calls the plug-in’s OfxSetHost function

	the number of plug-ins is determined via the
OfxGetNumberOfPlugins
function,

	for each plug-in defined in the binary

	OfxGetPlugin is called,

	the pluginApi and apiVersion of the returned OfxPlugin struct are examined,

	if the plug-in’s API or its version are not supported, the plug-in
is ignored and we skip to the next one,

	the plug-in’s pointer is recorded in a plug-in cache,

	an appropriate OfxHost struct is passed to the plug-in via setHost in the returned OfxPlugin struct.

Group list

	Group ActionsAll

	Group CudaRender

	Group ErrorCodes

	Group ImageEffectActions

	Group ImageEffectPropDefines

	Group InteractActions

	Group KeySyms

	Group MetalRender

	Group OpenClRender

	Group OpenGLRenderSuite

	Group ParamPropDefines

	Group ParamTypeDefines

	Group PropertiesAll

	Group PropertiesGeneral

	Group PropertiesInteract

	Group StatusCodes

	Group StatusCodesGeneral

	Group StatusCodesImageEffect

Group ActionsAll

	
group ActionsAll

	These are the actions passed to a plug-in’s ‘main’ function

Group CudaRender

	
group CudaRender

	
Defines

	
kOfxImageEffectPropCudaRenderSupported

	Indicates whether a host or plugin can support Cuda render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Cuda render

	”true” - the host or plugin can support Cuda render

	
kOfxImageEffectPropCudaEnabled

	Indicates that an image effect SHOULD use Cuda render in the current action.

If a plugin and host have both set kOfxImageEffectPropCudaRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Cuda memory pointers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Cuda memory pointer.

	
kOfxImageEffectPropCudaStreamSupported

	Indicates whether a host or plugin can support Cuda streams.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support Cuda streams

	”true” - which means a host or plugin can support Cuda streams

	
kOfxImageEffectPropCudaStream

	The Cuda stream to be used for rendering.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property will only be set if the host and plugin both support Cuda streams.

If set:

	this property contains a pointer to the stream of Cuda render (cudaStream_t). In order to use it, reinterpret_cast<cudaStream_t>(pointer) is needed.

	the plugin SHOULD ensure that its render action enqueues any asynchronous Cuda operations onto the supplied queue.

	the plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action, and SHOULD NOT call cudaDeviceSynchronize() at any time.

If not set:

	the plugin SHOULD ensure that any asynchronous operations it enqueues have completed before returning from the render action.

Group ErrorCodes

	
group ErrorCodes

	

Group ImageEffectActions

	
group ImageEffectActions

	These are the list of actions passed to an image effect plugin’s main function. For more details on how to deal with actions, see Image Effect Actions.

Group ImageEffectPropDefines

	
group ImageEffectPropDefines

	These are the list of properties used by the Image Effects API.

Group InteractActions

	
group InteractActions

	These are the list of actions passed to an interact’s entry point function. For more details on how to deal with actions, see Interact Actions.

Group KeySyms

	
group KeySyms

	These keysymbols are used as values by the kOfxPropKeySym property to indicate the value of a key that has been pressed. A corresponding kOfxPropKeyString property is also set to contain the unicode value of the key (if it has one).

The special keysym kOfxKey_Unknown is used to set the kOfxPropKeySym property in cases where the key has a UTF8 value which is not supported by the symbols below.

Group MetalRender

	
group MetalRender

	
Defines

	
kOfxImageEffectPropMetalRenderSupported

	Indicates whether a host or plugin can support Metal render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support Metal render

	”true” - the host or plugin can support Metal render

	
kOfxImageEffectPropMetalEnabled

	Indicates that an image effect SHOULD use Metal render in the current action.

If a plugin and host have both set kOfxImageEffectPropMetalRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as Metal buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a Metal id<MTLBuffer>.

	
kOfxImageEffectPropMetalCommandQueue

	The command queue of Metal render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (id<MTLCommandQueue>). In order to use it, reinterpret_cast<id<MTLCommandQueue>>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous Metal operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

Group OpenClRender

	
group OpenClRender

	
Defines

	
kOfxImageEffectPropOpenCLRenderSupported

	Indicates whether a host or plugin can support OpenCL render.

	Type - string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only)

	Default - “false”

	Valid Values - This must be one of
	”false” - the host or plugin does not support OpenCL render

	”true” - the host or plugin can support OpenCL render

	
kOfxImageEffectPropOpenCLEnabled

	Indicates that an image effect SHOULD use OpenCL render in the current action.

If a plugin and host have both set kOfxImageEffectPropOpenCLRenderSupported=”true” then the host MAY set this property to indicate that it is passing images as OpenCL buffers.

	Type - int X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

	Valid Values
	0 indicates that the kOfxImagePropData of each image of each clip is a CPU memory pointer.

	1 indicates that the kOfxImagePropData of each image of each clip is a cl_mem.

	
kOfxImageEffectPropOpenCLCommandQueue

	The command queue of OpenCL render.

	Type - pointer X 1

	Property Set - inArgs property set of the kOfxImageEffectActionRender action

This property contains a pointer to the command queue to be used for Metal rendering (cl_command_queue). In order to use it, reinterpret_cast<cl_command_queue>(pointer) is needed.

The plugin SHOULD ensure that its render action enqueues any asynchronous OpenCL operations onto the supplied queue.

The plugin SHOULD NOT wait for final asynchronous operations to complete before returning from the render action.

Group OpenGLRenderSuite

	
group OpenGLRenderSuite

	
StatusReturnValues

OfxStatus returns indicating that a OpenGL render error has occurred:

	If a plug-in returns kOfxStatGLRenderFailed, the host should retry the render with OpenGL rendering disabled.

	If a plug-in returns kOfxStatGLOutOfMemory, the host may choose to free resources on the GPU and retry the OpenGL render, rather than immediately falling back to CPU rendering.

	
kOfxStatGPUOutOfMemory

	GPU render ran out of memory.

	
kOfxStatGLOutOfMemory

	OpenGL render ran out of memory (same as kOfxStatGPUOutOfMemory)

	
kOfxStatGPURenderFailed

	GPU render failed in a non-memory-related way.

	
kOfxStatGLRenderFailed

	OpenGL render failed in a non-memory-related way (same as kOfxStatGPURenderFailed)

Defines

	
kOfxOpenGLRenderSuite

	The name of the OpenGL render suite, used to fetch from a host via OfxHost::fetchSuite.

	
kOfxImageEffectPropOpenGLRenderSupported

	Indicates whether a host or plugin can support OpenGL accelerated rendering.

	Type - C string X 1

	Property Set - plugin descriptor (read/write), host descriptor (read only) - plugin instance change (read/write)

	Default - “false” for a plugin

	Valid Values - This must be one of
	”false” - in which case the host or plugin does not support OpenGL accelerated rendering

	”true” - which means a host or plugin can support OpenGL accelerated rendering, in the case of plug-ins this also means that it is capable of CPU based rendering in the absence of a GPU

	”needed” - only for plug-ins, this means that an effect has to have OpenGL support, without which it cannot work.

V1.4: It is now expected from host reporting v1.4 that the plugin can during instance change switch from true to false and false to true.

	
kOfxOpenGLPropPixelDepth

	Indicates the bit depths supported by a plug-in during OpenGL renders.

This is analogous to kOfxImageEffectPropSupportedPixelDepths. When a plug-in sets this property, the host will try to provide buffers/textures in one of the supported formats. Additionally, the target buffers where the plug-in renders to will be set to one of the supported formats.

Unlike kOfxImageEffectPropSupportedPixelDepths, this property is optional. Shader-based effects might not really care about any format specifics when using OpenGL textures, so they can leave this unset and allow the host the decide the format.

	Type - string X N

	Property Set - plugin descriptor (read only)

	Default - none set

	Valid Values - This must be one of
	kOfxBitDepthNone (implying a clip is unconnected, not valid for an image)

	kOfxBitDepthByte

	kOfxBitDepthShort

	kOfxBitDepthHalf

	kOfxBitDepthFloat

	
kOfxImageEffectPropOpenGLEnabled

	Indicates that an image effect SHOULD use OpenGL acceleration in the current action.

When a plugin and host have established they can both use OpenGL renders then when this property has been set the host expects the plugin to render its result into the buffer it has setup before calling the render. The plugin can then also safely use the ‘OfxImageEffectOpenGLRenderSuite’

	Type - int X 1

	Property Set - inArgs property set of the following actions…
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	Valid Values
	0 indicates that the effect cannot use the OpenGL suite

	1 indicates that the effect should render into the texture, and may use the OpenGL suite functions.

v1.4: kOfxImageEffectPropOpenGLEnabled should probably be checked in Instance Changed prior to try to read image via clipLoadTexture

Note

Once this property is set, the host and plug-in have agreed to use OpenGL, so the effect SHOULD access all its images through the OpenGL suite.

	
kOfxImageEffectPropOpenGLTextureIndex

	Indicates the texture index of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by ` OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLuint and used as the texture index when
 performing OpenGL texture operations.

 The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxImageEffectPropOpenGLTextureTarget

	Indicates the texture target enumerator of an image turned into an OpenGL texture by the host.

	Type - int X 1

	Property Set - texture handle returned by OfxImageEffectOpenGLRenderSuiteV1::clipLoadTexture (read only) This value should be cast to a GLenum and used as the texture target when performing OpenGL texture operations.

The property set of the following actions should contain this property:
	kOfxImageEffectActionRender

	kOfxImageEffectActionBeginSequenceRender

	kOfxImageEffectActionEndSequenceRender

	
kOfxActionOpenGLContextAttached

	Action called when an effect has just been attached to an OpenGL context.

The purpose of this action is to allow a plugin to set up any data it may need to do OpenGL rendering in an instance. For example…
	allocate a lookup table on a GPU,

	create an openCL or CUDA context that is bound to the host’s OpenGL context so it can share buffers.

The plugin will be responsible for deallocating any such shared resource in the kOfxActionOpenGLContextDetached action.

A host cannot call kOfxActionOpenGLContextAttached on the same instance without an intervening kOfxActionOpenGLContextDetached. A host can have a plugin swap OpenGL contexts by issuing a attach/detach for the first context then another attach for the next context.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

	
kOfxActionOpenGLContextDetached

	Action called when an effect is about to be detached from an OpenGL context.

The purpose of this action is to allow a plugin to deallocate any resource allocated in kOfxActionOpenGLContextAttached just before the host decouples a plugin from an OpenGL context. The host must call this with the same OpenGL context active as it called with the corresponding kOfxActionOpenGLContextAttached.

The arguments to the action are…
	handle - handle to the plug-in instance, cast to an OfxImageEffectHandle

	inArgs - is redundant and set to null

	outArgs - is redundant and set to null

A plugin can return…
	kOfxStatOK, the action was trapped and all was well

	kOfxStatReplyDefault, the action was ignored, but all was well anyway

	kOfxStatErrMemory, in which case this may be called again after a memory purge

	kOfxStatFailed, something went wrong, but no error code appropriate, the plugin should to post a message if possible and the host should not attempt to run the plugin in OpenGL render mode.

Typedefs

	
typedef struct OfxImageEffectOpenGLRenderSuiteV1 OfxImageEffectOpenGLRenderSuiteV1

	OFX suite that provides image to texture conversion for OpenGL processing.

	
struct OfxImageEffectOpenGLRenderSuiteV1

	
#include <ofxGPURender.h>

OFX suite that provides image to texture conversion for OpenGL processing.

Public Members

	
OfxStatus (*clipLoadTexture)(OfxImageClipHandle clip, OfxTime time, const char *format, const OfxRectD *region, OfxPropertySetHandle *textureHandle)

	loads an image from an OFX clip as a texture into OpenGL

	clip - the clip to load the image from

	time - effect time to load the image from

	format - the requested texture format (As in none,byte,word,half,float, etc..) When set to NULL, the host decides the format based on the plug-in’s kOfxOpenGLPropPixelDepth setting.

	region - region of the image to load (optional, set to NULL to get a ‘default’ region) this is in the CanonicalCoordinates.

	textureHandle - a property set containing information about the texture

An image is fetched from a clip at the indicated time for the given region and loaded into an OpenGL texture. When a specific format is requested, the host ensures it gives the requested format. When the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the kOfxImageEffectActionRender action. If the region parameter is set to non-NULL, then it will be clipped to the clip’s Region of Definition for the given time. The returned image will be at least as big as this region. If the region parameter is not set or is NULL, then the region fetched will be at least the Region of Interest the effect has previously specified, clipped to the clip’s Region of Definition. Information about the texture, including the texture index, is returned in the textureHandle argument. The properties on this handle will be…
	kOfxImageEffectPropOpenGLTextureIndex

	kOfxImageEffectPropOpenGLTextureTarget

	kOfxImageEffectPropPixelDepth

	kOfxImageEffectPropComponents

	kOfxImageEffectPropPreMultiplication

	kOfxImageEffectPropRenderScale

	kOfxImagePropPixelAspectRatio

	kOfxImagePropBounds

	kOfxImagePropRegionOfDefinition

	kOfxImagePropRowBytes

	kOfxImagePropField

	kOfxImagePropUniqueIdentifier

With the exception of the OpenGL specifics, these properties are the same as the properties in an image handle returned by clipGetImage in the image effect suite.

Note

	this is the OpenGL equivalent of clipGetImage from OfxImageEffectSuiteV1

	Pre:

	
	clip was returned by clipGetHandle

	Format property in the texture handle

	Post:

	
	texture handle to be disposed of by clipFreeTexture before the action returns

	when the clip specified is the “Output” clip, the format is ignored and the host must bind the resulting texture as the current color buffer (render target). This may also be done prior to calling the render action.

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - the image could not be fetched because it does not exist in the clip at the indicated time and/or region, the plugin should continue operation, but assume the image was black and transparent.

	kOfxStatErrBadHandle - the clip handle was invalid,

	kOfxStatErrMemory - not enough OpenGL memory was available for the effect to load the texture. The plugin should abort the GL render and return kOfxStatErrMemory, after which the host can decide to retry the operation with CPU based processing.

	
OfxStatus (*clipFreeTexture)(OfxPropertySetHandle textureHandle)

	Releases the texture handle previously returned by clipLoadTexture.

For input clips, this also deletes the texture from OpenGL. This should also be called on the output clip; for the Output clip, it just releases the handle but does not delete the texture (since the host will need to read it).

	Pre:

	
	textureHandle was returned by clipGetImage

	Post:

	
	all operations on textureHandle will be invalid, and the OpenGL texture it referred to has been deleted (for source clips)

	Return:

	
	kOfxStatOK - the image was successfully fetched and returned in the handle,

	kOfxStatFailed - general failure for some reason,

	kOfxStatErrBadHandle - the image handle was invalid,

	
OfxStatus (*flushResources)()

	Request the host to minimize its GPU resource load.

When a plugin fails to allocate GPU resources, it can call this function to request the host to flush its GPU resources if it holds any. After the function the plugin can try again to allocate resources which then might succeed if the host actually has released anything.

	Pre:

	

	Post:

	
	No changes to the plugin GL state should have been made.

	Return:

	
	kOfxStatOK - the host has actually released some resources,

	kOfxStatReplyDefault - nothing the host could do..

Group ParamPropDefines

	
group ParamPropDefines

	These are the list of properties used by the parameters suite.

Group ParamTypeDefines

	
group ParamTypeDefines

	These strings are used to identify the type of the parameter when it is defined, they are also on the kOfxParamPropType in any parameter instance.

Group PropertiesAll

	
group PropertiesAll

	These strings are used to identify properties within OFX, they are broken up by the host suite or API they relate to.

Group PropertiesGeneral

	
group PropertiesGeneral

	These properties are general properties and apply to may objects across OFX

Group PropertiesInteract

	
group PropertiesInteract

	These are the list of properties used by the Interact API documented in CustomInteractionPage.

Group StatusCodes

	
group StatusCodes

	These strings are used to identify error states within ofx, they are returned by various host suite functions, as well as plug-in functions. The valid return codes for each function are documented with that function.

Group StatusCodesGeneral

	
group StatusCodesGeneral

	General status codes start at 1 and continue until 999

Group StatusCodesImageEffect

	
group StatusCodesImageEffect

	These are status codes returned by functions in the OfxImageEffectSuite and Image Effect plugin functions.

They range from 1000 until 1999

 nav.xhtml

 Table of Contents

 		
 Welcome to OpenFX documentation

 		
 OpenFX reference

 		
 Structure of The OFX and the Image Effect API

 		
 The Structure Of The Generic OFX API

 		
 OFX APIs

 		
 The OFX Image Effect API.

 		
 The Generic Core API

 		
 OFX Include Files

 		
 Identifying and Loading Plug-ins

 		
 The Plug-in Main Entry Point And Actions

 		
 Suites

 		
 Sequences of Operations Required to Load a Plug-in

 		
 Who Owns The Data?

 		
 The OfxHost Struct

 		
 The OfxPlugin Struct

 		
 Interpreting the OfxPlugin Struct

 		
 Packaging OFX Plug-ins

 		
 Binary Types

 		
 Installation Directory Hierarchy

 		
 Installation Location

 		
 Plug-in Icons

 		
 Externally Specified Resources

 		
 The Image Effect API

 		
 Introduction

 		
 Image Effect API Header Files

 		
 Actions Used by the API

 		
 Main Objects Used by the API

 		
 Image Processing Architectures

 		
 The Image Plane

 		
 Regions of Definition

 		
 Regions Of Interest

 		
 Tiled Rendering

 		
 Tree Based Architectures

 		
 Simpler Architectures

 		
 Image Effect Contexts

 		
 The Generator Context

 		
 The Filter Context

 		
 The Transition Context

 		
 The Paint Context

 		
 The Retimer Context

 		
 The General Context

 		
 Parameters Mandated In A Context

 		
 Thread and Recursion Safety

 		
 Recursive Actions

 		
 Coordinate Systems

 		
 Spatial Coordinates

 		
 Temporal Coordinates

 		
 Images and Clips

 		
 What Is An Image?

 		
 Defining Clips

 		
 Getting Images From Clips

 		
 Premultiplication And Alpha

 		
 Clips and Pixel Aspect Ratios

 		
 Allocating Your Own Images

 		
 Effect Parameters

 		
 Introduction

 		
 Defining Parameters

 		
 Parameter Types

 		
 Multidimensional Parameters

 		
 Integer Parameters

 		
 Double Parameters

 		
 Colour Parameters

 		
 Boolean Parameters

 		
 Choice Parameters

 		
 String Parameters

 		
 Group Parameters

 		
 Page Parameters

 		
 Custom Parameters

 		
 Push Button Parameters

 		
 Animation

 		
 Parameter Interfaces

 		
 Paged Parameter Editors

 		
 Instance changed callback

 		
 Parameter Undo/Redo

 		
 XML Resource Specification for Parameters

 		
 Parameter Persistence

 		
 Parameter Properties Whose Type Vary

 		
 Types of Double Parameters

 		
 Plain Double Parameters

 		
 Angle Double Parameters

 		
 Scale Double Parameters

 		
 Time Double Parameters

 		
 Absolute Time Double Parameters

 		
 Spatial Parameters

 		
 Double Parameters Defaults, Increments, Mins and Maxs

 		
 Parametric Parameters

 		
 Setting Parameters

 		
 Rendering

 		
 Identity Effects

 		
 Rendering and The Get Region Actions

 		
 Multi-threaded Rendering

 		
 OFX : Fields and Field Rendering

 		
 Rendering In An Interactive Environment

 		
 Rendering on GPU

 		
 Interacts

 		
 Overlay Interacts

 		
 Parameter Interacts

 		
 Interact Actions

 		
 Image Effect Clip Preferences

 		
 Frame Varying Effects

 		
 Continuously Sampled Effects

 		
 Specifying Pixel Depths

 		
 Specifying Pixel Components

 		
 Specifying Pixel Aspect Ratios

 		
 Specifying Fielding

 		
 Specifying Frame Rates

 		
 Specifying Premultiplication

 		
 Actions Passed to An Image Effect

 		
 Actions Passed to an Interact

 		
 OpenFX suites reference

 		
 OfxPropertySuiteV1

 		
 OfxImageEffectSuiteV1

 		
 OfxProgressSuiteV1

 		
 OfxTimeLineSuiteV1

 		
 OfxParameterSuiteV1

 		
 OfxParametricParameterSuiteV1

 		
 OfxMemorySuiteV1

 		
 OfxMultiThreadSuiteV1

 		
 OfxInteractSuiteV1

 		
 OfxMessageSuiteV1

 		
 OfxMessageSuiteV2

 		
 OfxImageEffectOpenGLRenderSuiteV1

 		
 OfxDrawSuiteV1: Drawing Overlays

 		
 Properties by object reference

 		
 Properties on the Image Effect Host

 		
 Properties on an Effect Descriptor

 		
 Properties on an Effect Instance

 		
 Properties on a Clip Descriptor

 		
 Properties on a Clip Instance

 		
 Properties on an Image

 		
 Properties on Parameter Set Instances

 		
 Properties on Parameter Descriptors and Instances

 		
 Properties Common to All Parameters

 		
 Properties On Group Parameters

 		
 Properties Common to All But Group and Page Parameters

 		
 Properties Common to All Parameters That Hold Values

 		
 Properties Common to All Numeric Parameters

 		
 Properties Common to All Double Parameters

 		
 Properties On 1D Double Parameters

 		
 Properties On 2D and 3D Double Parameters

 		
 Properties On Non Normalised Spatial Double Parameters

 		
 Properties On 2D and 3D Integer Parameters

 		
 Properties On String Parameters

 		
 Properties On Choice Parameters

 		
 Properties On Custom Parameters

 		
 Properties On Page Parameters

 		
 On Parametric Parameters

 		
 Properties on Interact Descriptors

 		
 Properties on Interact Instances

 		
 Properties Reference

 		
 Auto-generated Reference Index

 		
 File list

 		
 Struct list

 		
 Complete Reference Index

 		
 Status Codes

 		
 Status codes for GPU renders:

 		
 Changes to the API for 1.2

 		
 Introduction

 		
 Packaging

 		
 Versioning

 		
 Plugin Description

 		
 Parameter Groups and Icons

 		
 New Message Suite

 		
 New Syncing Property

 		
 Sequential Rendering

 		
 Interactive Render Notification

 		
 Host Operating System Handle

 		
 Non Normalised Spatial Parameters

 		
 Native Overlay Handles

 		
 Interact Colour Hint

 		
 Interact Viewport Pen Position

 		
 Parametric Parameters

 		
 OpenFX Programming Guide

 		
 Foreword

 		
 Intended Audience

 		
 What is OFX?

 		
 The Examples

 		
 Wrapping the API

 		
 License

_static/minus.png

_static/plus.png

_images/kinderProxy.jpg

_static/file.png

_images/SaturationNuke.jpg
QOO BHPUWROBMO % I

Ramp1.

pelican jog

Mask
Source.

Sauration Exan)

2

Read1

OFX Saturation Example Node

Saturation [0 '
MaskChannel % [igbaaipha |~

_images/GainControlPanelNuke.jpg
o OFX Gain Examplet OOEI
OFX Gain Bxample Node

Gain f§
Apply To Alpha

_images/imagePlane.jpg

_images/dataLayout.jpg
Column 0 Column 1 Column 2

Row3
Row 1
g Row 1
H Rawo
ﬁ [i memaryaans, >

Data Pointer

_images/kinderCanonical.jpg

_images/kinder720.jpg

